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Abstract — The aim of the present paper is to 

increase the efficiency of self-tuning generalized 
minimum variance (GMV) control of linear time-
invariant (LTI) systems followed by deadzone 
nonlinearities. An approach, based on reordering of 
observations to be processed for the reconstruction of 
an unknown internal signal that acts between LTI 
system and a static nonlinear block of the closed-loop 
Wiener system, has been developed. The results of 
GMV self-tuning control of the second order LTI 
system with an ordinary deadzone are given. 
 

Keywords — Self-tuning, GMV control, Wiener 
system, deadzone, observations.                                                                 

 
 

1.     Introduction 
 

Static nonlinearity, such as a deadzone, 
characterizes the response of the system to small 
signal values and is common in most control systems 
[1], especially, in hydraulic and electro-mechanical 
ones. Frequently, nonlinearities of actuator devices  
occur on the output of the system to be controlled 
that limit the system performance considerably [2, 3]. 
Therefore, Wiener systems, consisting of a linear 
dynamic block followed by a static nonlinear one, are 
considered to be suitable for a broad spectrum of 
nonlinearities [4]. 

Diverse compensators have been made up, and 
various techniques have been proposed to 
compensate deadzone nonlinearities: the general 
actuator deadzone compensator adaptive control 
schemes have been developed in [5,6]; an intelligent 
compensator of deadzone nonlinearity, based on 
tuning neural network algorithms, is given in [7], 
while a fuzzy logic is used in [8], etc. Thus, various 
compensators have been tried to adjust the 
performance of control systems by reducing parasitic 
effects of a deadzone. On the other hand, we describe 
here the approach based on reconstruction  of   the  
unmeasurable   internal  signal, 
 

  
.  

 
acting  between both  blocks  of the Wiener system, 
without designing special and complex enough 
compensators. Afterwards, instead of measurable 
output of the Wiener system, affected by the 
deadzone nonlinearity, the reconstructed signal, free 
of the parasitic effects, could be used for self-tuning 
control of the LTI system. 
  In Section 2, a statement of the problem is 
presented. In Section 3, the general method is given 
for determining an auxiliary signal that corresponds 
to the extracted version of the internal one. Section 4 
presents the simulation results of the Wiener system 
to be controlled. Section 5 contains conclusions.                                                                              

 
 

2. Statement of the problem 
 

Assume that the output Nkky ,1),( =∀ of the self-
tuning LTI system, controlled by the GMV control 
law, has failed to correctly track the given set-point 
signal )}({ kr  in an noisy environment (Fig. 1).  Here 
signals: {r(k)} is a set-point signal;{ y(k)} is an 
output signal; {n(k)} is a measurement noise. The 
reason is the  deadzone  nonlinearity  in  the  output 
of the given 

                                                                              
                                                                             {n(k)} 

 
{r(k)}          {y(k)} 
 

Figure 1.  A closed-loop Wiener system, consisting of  
LTI system and a deadzone (Fig. 2) with a self-tuning 
GMV controller. The process noise filter is not shown 

here. 
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                               {v(k)}         {n(k)}          

 {u(k)}                                 {x(k)}                                   {y(k)} 
 

Figure 2.  An open-loop Wiener system, consisting of LTI 
system and a deadzone. The internal unmeasurable noisy 

signal {x(k)} is acting between the LTI system and the 
deadzone. The output of the LTI system is corrupted by 

process noise {v(k)}, while the output of the deadzone by 
the measurement noise {n(k)}. Other signals: {u(k)} is an 

input signal; {y(k)} is an output signal. 
 

LTI system. Thus, the system to be controlled indeed 
consists of a linear block followed by a static 
nonlinearity (Fig. 2), and it is called a Wiener 
system. The linear block of the Wiener system can be 
represented by an LTI system with the transfer 
function of the form 
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with a finite number of parameters                       
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that are determined from the set Ω  of permissible   
parameter values .Θ  Here 1−q  is a time-shift 
operator. The unmeasurable internal intermediate 
signal 
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Nk ,1=∀   generated by the linear part of the Wiener 

system as a response to the input Nkku ,1)( =∀ and 

corrupted by the additive noise ,,1)( Nkkv =∀  is 
acting on the static nonlinear part ),( df ⋅  with ,0>d
i.e.,  

 
).(),()( kndfky +⋅=                                             (3) 

 
 

 
Here the nonlinear part of the Wiener system is a 
deadzone of the form 

 









−≤+

<<−

≥−

=⋅

dkxifdkx

dkxdif

dkxifdkx

df

)()(

.)(0

)()(

),(                    (4)    

 

The process noise Nkkv ,1),( =∀  and the 

measurement noise Nkkn ,1),( =∀  are added to the 

intermediate signal Nkkx ,1),( =∀  and to the output 

signal ,,1),( Nkky =∀ respectively.   
 
The aim of the given paper is to avoid the parasitic 
effects of nonlinear distortions, induced by the 
deadzone nonlinearity (4), that appear in the output 

)}({ ky of the self-tuned GMV control LTI system 
(Fig. 1) without designing special enough 
compensators.                                                                          

 
3. Internal signal reconstruction 

 
Now, to calculate the auxiliary signal 

,,1),(ˆ Nkkx =∀  i.e., the estimate of unmeasurable 

,,1),( Nkkx =∀   of the closed-loop Wiener system 
(Fig. 1) by processing N pairs of observations of the 
set-point signal )}({ kr and noisy cut-off output 

)},({ ky  one can use the finite impulse response (FIR) 
model 

 
,)()()1()()( 10 knkrkrkrky +−++−+= µγγγ µ  (5)  

                 

,,1 Nk +=∀ µ  or using the expression in a matrix 
form 

 
.nΠγV +=               (6) 

Here  
 

TNyNyyy ))(),1(,),2(),1(( −++= µµV         (7) 
    

is the vector ;1)( ×− µN  
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is the full rank regression matrix ),1()( +×− µµN  
consisting only of observations of the non-noisy set-
point signal )};({ kr ),,,( 10 µγγγ =Tγ  is the vector 

1)1( ×+µ of unknown parameters of FIR model (5);  
 

TNnNnnn ))(),1(,),2(),1(( −++= µµn             (9)    
 

is the vector ,1)( ×− µN consisting of the values 
)};({ kn µ  is the order of FIR filter that can be 

arbitrarily large, but fixed.  
   The reason for the use of the FIR model is as 
follows: the dependence of some regressors on the 
process output will be facilitated, and the assumption 
of ordinary LS that the regressors depend only on the 
non-noisy input signal, will be satisfied. Next, let us 
rearrange the data in the vector V in an ascending 
order of their values, reordering the associated rows 
of the matrix Π as well [9]. We could do that by 
interchanging equations in the initial system (6).  
Note that the interchange of equations does not 
influence the accuracy of LS parameter estimates 

)ˆ,,ˆ,ˆ(ˆ 10 µγγγ =Tγ  to be calculated. Then, assuming 
that a deadzone is present in the given closed-loop 
system, the vector V and the matrix Π  should be 
partitioned into three data sets: the left-hand data set 

,11 γΠV =  the middle data set ,22 γΠV = and the 
right-hand data set ,33 γΠV =  according to the three 
regimes of the deadzone nonlinearity. Here  

321 ,, VVV  are 1,1 21 ×× NN  and  13 ×N   vectors, 

respectively, 321 ,, ΠΠΠ are )1(1 +× µN , 

)1(2 +× µN  and )1(3 +× µN  matrices, 

correspondingly, where 1NN = .32 NN ++  Thus, 
initial system (6) is reordered into a system 

 
.nγΠV +=           (10) 

 
 with ,],,[ 321

TVVVV = and  T],,[ 321 ΠΠΠΠ =   
by simply interchanging equations in the initial 
system (6). The left-hand side data set  1V  ( 1N

samples) consists of the reordered ,,1~),~(~
1Nkky =∀

equal or less than negative ,d  the middle data set 2V

( 2N samples) consists of the reordered cut-off values 

2,1~),~(~ Nkky =∀ higher than negative ,d  but lower 
than ,d  and the right-hand side data set 3V  ( 3N  
samples) consists of the reordered values 

3,1~),~(~ Nkky =∀ equal to or more than .d  Here k~  is 

any integer k  rearranged in an ascending order, 
dependent on the reordered values of observations 

.,1~),~(~ Nkky =∀  
Hence, the reordered observations with the positive 

values, equal or higher than ,d  will be concentrated 
on the right-hand side set, while the reordered 
observations with the negative values, equal or 
smaller than  ,d−  on the left-hand side set. The 
observations of the middle data set of 

2,1~),~(~ Nkky =∀ are cut-off. It follows that, for a 
deadzone there exist three regimes in total, but only 
the systems of linear equations 1Π  and 3Π  are valid,  
because they both are based on the true reordered 
values of )}.({ ky  The system 2Π  is not usable 
because of the presence of cut-off observations. It is 
easy to separate the particles of )}(~{ ky by deleting the 
middle data set 2V ( 2N samples) and the system  ,2Π  
if the values of the measurement noise  )}({ kn are 
small enough. In this case, only 31 , VV  and 31 , ΠΠ  
are needed for a further extraction of the 
unmeasurable internal signal .,1),( Nkkx =∀  Note 

that the estimate d̂ of the size d  of the deadzone 
nonlinearity is determined after separating the 
particles. Then, the reordered values 

31,1~,)~(~ NNkky +=∀  in 31 , VV ought to be processed 
by the deadzone inverse according to [5]. This can be 
done simply by adding a constant d̂  equal to the 
estimated size of the deadzone, too. 

 To estimate the parameters ),,,( 10 µγγγ =Tγ of 
FIR model (5), we can use the expression of the form 

 
.ˆˆ)ˆˆ(ˆ 1 VΠΠΠγ TT −=                       (11) 

 
 Here )ˆ,,ˆ,ˆ(ˆ 10 µγγγ =Tγ    is a vector 1)1( ×+µ  

of the estimates of parameters ),,,( 10 µγγγ =Tγ , 

respectively; Π̂  and V̂ are the same as Π~  and ,~V

correspondingly, where 2Π and 2V  are deleted. 

Then, the estimate Nkkx ,1),(ˆ =∀ of the intermediate 

unmeasurable signal Nkkx ,1,)( =∀  could be 
extracted by 

 
,)(ˆ)1(ˆ)(ˆ)(ˆ 10 µγγγ µ −++−+= krkrkrkx         (12)  

 
where the true values µγγγ ,,, 10  are replaced by 

their estimates )ˆ,,ˆ,ˆ(ˆ 10 µγγγ =Tγ , respectively, 
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calculated in (11) [9]. Note that the result of this step 
is the auxiliary signal (12) that is a reconstructed 
version of the intermediate signal Nkkx ,1),( =∀ of 
the closed-loop system. To estimate the parameters 
of FIR model (5) recursively, one can use the well-
known ordinary recursive least squares (RLS). Now, 
instead of the cut-off  signal  ,,1),( Nkky =∀   that  
has   parasitic  effects induced by the deadzone, the 
current values of Nkkx ,1),(ˆ =∀  calculated by (12), 
will be used for the self-tuning GMV control of the 
basic LTI system.  
 
 
4. Simulation results  

 
The linear block of the control system (Fig. 2) is 

given by transfer function ),( 1 Θ−qG . Here the true 
parameters are: .7.0,5.1,5.0,1 2121 =−=== aabb  
The output of the Wiener system )}({ ky  is generated 
by (2), (3),  where the deadzone size d = 0.5. The 
GMV controller for an LTI system is given by 

  

qb

krkubkyakya
ku

+

+−−−+
=

1

221 )()1()1()(
)(     (13)  

 
with .5.2=q  Then, 2000=N  data points have been 
generated with additive process and measurement 
noises according to 

 
,,1),()()(),()()( 21 Nkkvkykykvkxkx =∀+=+= λλ

    
 

respectively. The values of 21 , λλ  were chosen so 
that SNRs (the square root of the ratio of signal and 
noise variances) were equal to 100 for both noises.  

To implement the self-tuning GMV controller 
correctly, it is necessary, firstly, to estimate the LTI 
system parameters  recursively by the next RLS, and, 
secondly, in each current operation, to substitute their 
estimated values in expression (13). Finally, the 
current estimate 2000,1,)(ˆ =∀kku  of the value 

2000,1,)( =∀kku  is determined by (13), if the cut-off 
and noisy ),(ky  and )1( −ky  are changed by the 
current values )(ˆ kx  and ),1(ˆ −kx respectively. 

 
The simulation results, obtained in the noisy frame, 

are shown in (Figs 3, 4). They imply that the iterative 
technique,   based on the set-point signal )}({ kr  and 

output data rearrangement )},({ ky  and on FIR model 
(5), rejecting cut-off observations )},({ ky  could be 
used for the recursive parametric identification of the 
Wiener system, if the deadzone inverse were 
employed (Fig.3) with estimated .5.0ˆ =d  In such a 
case, the linear block parametric identification results 
of the Wiener system (Fig. 3d) are better than that 
shown in (Fig. 4d), where the value of  2b̂  is 
unexpected negative (see Table 1).  The  true  value  
of  2b  is 0.5. 

 
    The accuracy of self-tuning GMV control of an 
LTI system, followed by the deadzone nonlinearity, 
with the unmeasurable internal signal extraction and 
deadzone inverse is increased (Fig. 3b) as compared 
with the same parametric estimation scheme but 
without the deadzone inverse (Fig. 4b). 

 

 
 
 
Figure 3. GMV self-tuning control of the Wiener system 

(Figs 1, 2) with the internal signal 2000,1),( =∀kkx  
extraction using the FIR model (5) and employing the 
inverse deadzone with ,5.0ˆ =d dependent on the processed 
observations.  

 
Signals in Fig. 3: set-point signal 2000,1),( =∀kkx  

(1a, 1b),  cut-off and noisy output 2000,1),( =∀kky  

(2a),  estimate of intermediate signal 2000,1),(ˆ =∀kkx  

(2b), true input 2000,1),( =∀kku  (1c), its estimate 

2000,1),(ˆ =∀kku  (2c), current vector of estimates of 

parameter )ˆ,ˆ,ˆ,ˆ(ˆ
2121 aabb

T
=Θ (d). Curves in (d): 1b̂ (1), 

2b̂ (2), 1â (4),  2â  (3). 
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Table 1.   Parameter estimates after 2000 iterations. 
True values are: .7.0,5.1,5.0,1 2121 =−=== aabb  

 
    Fig.       1b̂        2b̂        1â       2â  

     3d 0.6127 0.4396 -1.2709 0.3924 
     4d 1.0029 -0.6672 -1.3726 0.5930 

 
 

Figure 4.  The values and markings are the same as in   
     (Fig.3). The inverse  deadzone is not applied here.            
 
 

5.     Conclusions  
 
Neural network and fuzzy logic models are used 

broadly now for self-tuning control of nonlinear 
processes.  However,  it is known that such model 
representations frequently are too complex and 
difficult to implement. Besides, their use to adopt the 
changes in real processes is problematic, too.  

In practice, one has an interest in approaches that 
are computationally efficient, speedy, and easily 
implemented because “the calculation time for digital 
controllers is usually between a hundredth of a 
second and one second”. That is why, the original 
approach is presented here, based on the extraction of 
an unknown internal intermediate signal, acting 
between linear and nonlinear blocks of the Wiener 
system with an ordinary deadzone nonlinearity, 
avoiding complex compensators.  It shows the 
efficient performance of self-tuning GMV control of 
the initial LTI system, if the deadzone inverse is also 
used (Figs 3, 4).  
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