Contextual Information Retrieval within Recommender System: Case Study “E-learning System”

Mourad Brik, Mohamed Touahria

Abstract – This paper focuses on monitoring and analyzing user activities on collaborative filtering-based recommender system in order to guess suitable and unsuitable items’ context information using rating matrix which makes more efficient adaptation task. An ontology-based user profile and rules-based context modeling for reasoning about context information is proposed in this research work, in addition to an investigation to apply Semantic Web technologies in user modeling and context reasoning. This proposal is applied in education field in which we have designed an authoring tool for learning objects within ubiquitous environment. This system aims to improve the learning object production task (creation, review, edition…) on behalf of technologies offered by collaborative filtering systems as well as user behaviors monitoring to improve the recommendation process.

Keywords – collaborative filtering, user profile, context aware, rule-based ontology, user behaviors

1. Introduction

Recommender systems (RS) have obtained significant importance in the last decade which provides a relevant data source (rating data). This paradigm has been used in many domains, such as E-commerce, where the recommender systems are used to provide different products to customers with different needs. In tourism area these systems are used to retrieve personalized and appealing location and objects for the potential users of touristic products.

Data generated by recommender engine are used to construct a decision support model. The RS will offer an amount of information easy to manage, adapted to the user needs and preferences. An important topic extensively used in recommendation system is called Collaborative filtering (CF). This last one used a rating matrix which is the basis of recommendation generation in CF-based recommendation system that contains both rated and predicted data value. A rating score is given directly by user of interest while a predicted value is offered by the system using data mining methods. Systems that are able to detect the context in which users operate the items were exposed to enhance the recommendation method. This paradigm exploits different methods to recognize the effect of contextual information on prediction of the ratings value. These systems are called CARS (Context Aware Recommended System) that integrate the context aspect into recommendation mechanism to generate more personalized objects and services. Contrary, recommender system which does not take the context aspect into account maybe lost in predictive task.

Analysis of users’ interactions with the items provides important information about users’ behavior, a behavior which is defined as a concept that models the characteristics of a user interacting with a system [22] and provides important information on the consumption of context resource. A user behavior monitoring and analysis is an important way that aids to generate implicit data and can be fully used to make the system adapted to the user. It has been used by a lot of systems that support recommendation, this work intents to analyze the user behavior in ubiquitous environment in order to deduce relevant information...
relatively to the resource context. Our system has been designed for this purpose. It allows us to retrieve relevant and irrelevant context information by analyzing the interaction of the user with the resource, because the user interaction reflects user’s behaviors and interests. In another way our system answers the question: from all contextual data that can be acquired, what are suitable and what are not suitable for a specific resource? As a response to this question, we have applied this work on a dedicated recommender system for e-learning for which we propose an authoring system within users’ community. All our users were considered as authors with different levels (beginner, expert, professor, lecturer ...) and we took an assumption that the users utilize different devices equipped with different configuration (smart phone, PC). The collaborative filtering techniques is the platform of our work and we analyze the user behavior inside collaborative filtering system taking into account the time spent on learning object and a collaborative filtering result set.

Semantic-based technology offers the way to modeling the user and its interactions. The ontological model gives many advantages [12] which enable the representation of semantic information and permit reasoning via semantic-based rules which can enrich the representation by inferring unknown facts. On the other hand, enriching user profile data with semantic context information is useful to infer knowledge about what is the requirement in the adaptation process. The context of user interaction presented in this work is composed of three portions as indicated in [29]. These portions are environment, user and platform. User is described by its competencies and demographic information. Platform is the set of hardware (devices) that intervene in the interaction. Environment refers to the set of pieces that user interacted with (learning objects for our application). The second benefit of our designed system is its ability to present an authoring system for novice author (like beginner lecturer, author ...) who needs to know the point of view of her/his users community about her/his learning object being created by addressing the query to the subset of author’s community (considered as expert authors, professors,...) in order to know their opinions (rating data value) about the learning object. This proposal aims to help the author to improve his/her learning object taking into account the opinions of all collaborators. This application focuses on the recommended performance in memory-based collaborative filtering algorithms. The core of collaborative filtering is to calculate similarities among authors and learning objects documents.

2. Related Work and Motivation

The most existing approaches that are using in acquisition context were based on explicit, implicit and/or inferred contextual data [30] used physicals sensors (GPS, RFID ...). In [4], [24] the device characteristics were inferred automatically in order to calculate the suitability or likeability of applicant device. Other works have been based on manual resource description which can adjust or describe what are then context information suitable for. The work in [3] presents device capabilities detection (screen size, resolution) for adaptable user interface, this approach is based on fuzzy-reasoning mechanism to infer new user and device capabilities. In previous approaches it is noted that the context suitability decision is restrained to the resource holder whose resource context value required is difficult to be precisely defined, which leads sometimes to mistaken adaptation process. Our approach is different, as it solved the problem on the client side i.e., the user interactions with resource helps us to infer the appropriate context information.

A user interaction has been studied in many works, for instance, in [25], a user profile data has been automatically extracted using users’ community topics detection to infer relevant resource context information, [2] proposed a method that computes customized recommendation by combining past behavior of the user and the user community behavior. Many other works have proposed ontologies in order to describe the context of human activities. We found in [23] the most relevant works organized according to context parameters (location, time, user preferences ...). A user’s preferences ontology that describes device capabilities is used in [33]. The representation model can guide the adaptation of the content taking into account the device characteristics. The study in [5] presents a survey for semantic-based context reasoning approach. This work also listed many various context aware systems and tools that incorporate ontologies. The authors in [7] have described the SOUPA ontology (standard ontology for ubiquitous and pervasive ontology) written in OWL (ontology web language) for the purpose to modeling context in pervasive environment. Other example is CANON [31], an ontology for modeling context in pervasive computing environment that presents a context model and logic-based context reasoning schemes. In this work a context reasoning was focused on location (bedroom, bathroom, kitchen, ...) to derive user’s situation in smart phone scenarios. Other work has extended the CANON ontology by integrating a temporal ontology.
and rules-based context aware smart home [32]. Five rules are presented in [8] for multimedia conferencing process according to the user notification services (email, SMS, voice) and conferencing time efficiency. This strategy was implemented using rules language defined by JENA framework.

Many other works are tailored as a rule-based model for modeling and reasoning their context, we refer the reader to [23] for more examples. Above all, we believe that the use of semantic model provides a very powerful way to describe items and their relationships of users' profile which improves the effectiveness of recommendation task, the main contribution in this paper.

We defined a model for user profile that includes environment such as devices, items characteristics (learning objects in our use case) and inferences rules that model the user behaviors in order to retrieve relevant and irrelevant context information.

We show how to utilize the retrieved information and we apply this proposal in education field in order to improve the recommendation task. We tailored a collaborative filtering system to suit our needs and we have added two new metadata elements to the L.O.M (learning object metadata) scheme which can be automatically filled in order to store and manage the retrieved information.

The rest of this paper is organized as follows. Section 2 briefly describes the background regarding recommender systems. Section 3 describes the user profile and inference rules. The detailed description of our system can be found in Section 4. The evaluation and experimentation results are presented in Section 5. Finally, Section 6 is devoted to summarizing the conclusions and future work.

3. Knowledge Base for Rating Data

The most relevant thing in collaborative filtering-based recommender systems is rating matrix whose rows represent users and the columns represent items. This matrix can be used to infer latent information related to the user preference. In fact, when the user rated a specific item with high score, it implies that the end user has consumed the item with comfortable context. The knowledge base used in this study is composed of three layers: scores layer, user attention layer and items layer. The score layer represents the possible score given within recommender system (high, low, none), item layer represents item characteristics and user attention layer symbolizes potential user cognition state regarding an item.

The above figure illustrates the possible rating data in which we have supposed a threshold that separates data into two categories (high and low). The use of time counter aids to know the time spent on an item which helps us to figure out whether the user is interested or not. Therefore, our knowledge base represents the facts about rating score within collaborative filtering system and the possible causes of generation which are not exhaustive. As shown in Figure 1., the user liked an item which means that he is comfortable with it, in that event, we have considered that the item context is suitable for the user. Contrary, when the user disliked an item there are several reasons as shown in the above figure.

Our approach is based on two assumptions. The first: a high score given by a user implies the user context is appropriate; and the second: in some cases, the abstaining from rating an item is caused by the incompatibility of device resources with the item content.

4. User Profile

A user profile is a set of information that characterize a specific user which such recommender system can use to perform the adaptation task. Generally a user profile is represented as a set of weighted keywords, semantic networks, weighted concepts, or association rules. The most common description for user profiles is set of keywords which can be automatically extracted from documents and/or provided by the user itself. The construction of user profile is based on information sources, using a diversity of construction methods such as information retrieval or machine learning [1]. The user profile in our case use contains a set of weighted keywords for characterizing user competencies and items (keywords-
based items classification), some detailed information about user’s community such as demographic information, interests, and competencies for identifying a user and the hardware device characteristics, user interaction with items and history are also a part of the user profile.

For the first time, a user must complete a questionnaire about the personal information and competencies, afterwards any activity implies a recalculation of user competencies using some predefined rules, and finally user profile will be restructured automatically after any change in user history.

5. Rule-Based Context Reasoning

The main contribution in this work is detecting suitable and unsuitable context information using rating data provided by recommender engine. The user behaviors recognition with consideration of user session duration and data rates offer an important way to predict the suitable and/or unsuitable context information that is depicted by a set of information about hardware resource, which allows us to make recommendations for target user taking into account all retrieved information.

The strategy that we have applied in order to accomplish our task is based on two major criteria: the first one is time spent on item, and the second one is global rate of item provided by recommender engine.

Rule-based reasoning is a powerful method that allows us to derive relevant contextual information and relatively easy to implement using data provided by sensors. The information acquired from context sensors cannot be directly used for adapting arbitrary item. Therefore, useful contextual information can be obtained from context data according to a set of rules defined for each item.

Through Rule1 (table below), our system is capable to determine the ability of user competences that participate in the rating process. K represents user competencies as list of keywords and k’ represents the item classification as list of keywords, the built-in swrlb:ListIntersection is used in order to know the common keywords between users and item, it is satisfied when the intersection between list keywords (k) and list keywords(k’) is not empty.

Rule2 aims to determine the user attention (interested or not). The user is interested by an item when he/she has the ability to rate item and spends enough time on item. By Rule3 our system is able to detect the suitability of user context, this rule is based on the fact that the user who scores the item with high score signifies that the user has an appropriate context. Rule4 aims also to infer the user attention about an item (ignored), this rule is based on a time counter, whether the user did not spend enough time on the item, we infer that the user is ignored the item. Contrary, Rule5 provides us the set of uninterested users. Rule6 and Rule7 aim to elicit the user’s competencies as keywords list. Finally, Rule8 aims to retrieve the unsuitable context value which is based on the second assumption discussed above. This rule considers that if a user does not rate the content and spends a sufficient time on the item and if her/his predicted score equals “high” and the final score for item equals “high”, then we decide that her/his context is not suitable.

<table>
<thead>
<tr>
<th>ID</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td><code>hasKeywords(? u, ? k), hasKeywords(? it, ? k'), swrlb:listIntersection(? k', ? k) -> hasAbilityToRate(? u, ? it)</code></td>
</tr>
<tr>
<td>R2</td>
<td><code>hasAbilityToRate(? u, ? it), hasContext(? u, ? c), spend(? u, t), require(? it, t'), swrlb:greaterThan(t, t') -> interest(? u, ? it)</code></td>
</tr>
<tr>
<td>R3</td>
<td><code>interest(? u, ? it), rate(? u, "HIGH"), hasContext(? u, ? c) -> hasSuitableContext(? u, ? c)</code></td>
</tr>
<tr>
<td>R4</td>
<td><code>hasAbilityToRate(? u, ? it), spend(? u, ? t), swrlb:lessThan(t, t'), require(? it, t'), rate(? u, "none") -> ignoreWithoutInterest(? u, ? it)</code></td>
</tr>
<tr>
<td>R5</td>
<td><code>hasAbilityToRate(? u, ? it), spend(? u, ? t), swrlb:greaterThan(t, t'), require(? it, t'), rate(? u, "none") -> ignoreWithInterest(? u, ? it)</code></td>
</tr>
<tr>
<td>R6</td>
<td><code>Create(? u, ? it), hasKeywords(? it, ? k) -> hasCompetence(? u, ? k)</code></td>
</tr>
<tr>
<td>R7</td>
<td><code>rate(? u, "high"), hasKeywords(? it, ? k') -> hasCompetence(? u, ? k')</code></td>
</tr>
<tr>
<td>R8</td>
<td><code>interest(? u, ? it), rate(? u, "none"), predictedScore(? it, "high"), globalscore(? it, "high"), hasContext(? u, ? c) -> hasUnsuitableContext(? u, ? c)</code></td>
</tr>
</tbody>
</table>

6. Case Study in the Education Field

System Overview

By the following, we describe our system which is a tool for authoring the purpose in the education filed, it allows users to create new learning object and/or evaluate multimedia learning objects created by other users. The proposed system has two benefits. First, it is
intended to help users to create new learning objects by providing a collaborative environment, in which interested users can participate in content assessment. Users who participate in this mission can have some problems caused by different context configuration (resources hardware limitations). So to solve this trouble, we are taking charge of the context configuration in future distribution of the item. This latter represents the second advantage of this system, where we have tried to determine the appropriate and inappropriate context data according to the score provided directly by the users or predicted by the system as well as their behaviors.

Our system consists of five components: (a) Metadata extractor, (b) Document similarity calculator, (c) Users potential filtering, (d) Rating and predicting missing data manager, whose functions are elaborated below.

b) LOs similarity module: this module aims to find similar LOs from system’s database applying a cosine similarity approach using tf-idf weighting approach, although all documents have been presented as vector weighted in order to apply this formula.

c) Users potential filtering: this module aims to retrieve a set of similar users based on K-Nearest Neighbor algorithm using the Pearson correlation coefficient and the keywords’ list generate by above module and attempt to send the LO to this set of users in order to invite them to give their rate about the LO being created.

Ontology Based User Profile

In this study, we adopt the model represented by Ontology, which allows us to represent the model using standard computer languages like OWL and modeling the elements of a structured context. The Ontology is a formal specification of concepts and terms and relations between them [13]; it allows us to represent formally the dependencies between the different components of the context.
d) Rating and predicting missing data: this module is responsible for collecting the rate from similar users and predicts all missing data in order to calculate the average between them, it uses the LOs similarity module and user similarity module to perform the predicting task.

Finally all data (learning object and its metadata) are stored in a database for further access by students, lecturer and authors.

In the present case use, the context kind is represented by bandwidth and support multimedia hardware (image quality, screen resolution). In addition, our ontology includes user characteristics and interactions, items characteristics and recommender system data aspect.

Our goal was twofold. First we tried to define the conceptual vocabulary mobilized for the representation of knowledge in communities of the authors of educational resources. Then we also wanted to reuse the Ontology of the domain of rating educational resources proposed in the literature by integrating them.

Describing Learning Objects

a) Metadata standards

In many research domains, the most common way to describe an object is to use metadata; these descriptors are significant in the education field for access, retrieval and reuse of the learning object. The present work uses a set of metadata attributes (metadata scheme) in order to describe the user context and its environment also describing and indexing the learning objects.

A learning object is a sort of digital element that permits content reuse, independence and flexibility in order to give a high quality of control to users [32].

However to get better learning object description, the use of metadata is necessary to accomplish this task.

The common definition of Metadata is data about data; therefore, to ensure interoperability with other systems, we must use a standard. By the following we give details of standards that are used in the educational field.

The Dublin Core (DC), invented by Dublin Core Metadata Initiative (DCMI), is a simple metadata scheme which is used in many works [11]. This scheme is presented as a set of 15 features (Title, Identifier, Language, and other), the main key to use this scheme is that compatible for all domains; furthermore, many other additional attributes are invented called qualifiers that refine the 15 base elements to increase the efficiency of the learning object indexing. For more details, we refer the reader to [11].

(IEEE) Institute of Electrical and Electronics Engineers invented a dedicated standard for education context that allows the effective learning object description, this metadata scheme is used in many LOR (learning object repository), called IEEE 1484.12.1-2002 Learning Object Metadata Standard (LOM) [15]. This scheme provides categories and each category contains some elements and thus, in whole, LOM offers 76 data elements.

b) Metadata construction phase

The context information kind studied in this case use seems useful for an appropriate distribution of learning objects. In order to retrieve the suitable context information, we need to collect and store the context data used in rating phase for each participant (screen size, screen resolution and internet bandwidth), so to accomplish this task, we proposed adding an extension to the LOM standard. This extension aims to preserve interoperability with other educational systems and also facilitate the adaptation treatment. To achieve this, we refer to [6] where is proposed an extension of the LOM to MLM, Mobile learning metadata, that consist of 3 top level categories: 1) Learning object, which consist of information describing the learning resource, 2) Learner, which consist of information describing the learner, 3) Setting, which consists of information describing the context state of the learning environment. Therefore, in our work, we have proposed an extension to the LOM standard in order to describe the learning object. The extension proposed is Suitable_Context and Unsuitable_Context at technical category (branch 4.4.1.5 and 4.4.1.6). This extension is used to store suitable configuration and unsuitable configuration that is recommended to using rightly the learning object.

Table 2. Proposed metadata elements

<table>
<thead>
<tr>
<th>Category</th>
<th>Elements LOM</th>
<th>Sub element</th>
</tr>
</thead>
<tbody>
<tr>
<td>4- technical</td>
<td>4.4.1.5 Suitable_Context</td>
<td>4.4.1.5.1 Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4.1.5.2 Value</td>
</tr>
<tr>
<td></td>
<td>4.4.1.6 Unsuitable_Context</td>
<td>4.4.1.6.1 Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4.1.6.2 Value</td>
</tr>
</tbody>
</table>

c) Generation of metadata elements

In order to describe the learning content about the subject covered, we have designed and implemented an extracting keywords algorithm.
The most used formula in this context is the weighting term frequency – inverse document frequency (tf-idf).

To use (tf-idf), the document must pass through many phases, like Tokenization (sentences are splitting into words) and Remove Stop-word (i.e. words that haven’t any meaning for the subject) and finally Stemming (using a specific morphologic analysis related to current language, each word is abridged to its morphologic root)

$$w_{ij} = tfidf(t_i, d_j) = tf(t_i, d_j) * log\frac{|D|}{tf(t_i, D)}$$

Where tf(t_i,d_j) represents how many times the term t_i appear in document d_j (term frequency (tf)); |D| is the number of documents in the corpus; tf(t_i ,D) refers to the number of documents in the corpus that the term t_i appears in.

As a result of this phase, we obtain an ordered vector representation of the document dj as a vector of (term| weight).

$$d_j = \{(t_1|w_1), (t_2|w_2), (t_3|w_3), \ldots\}$$

Where $$w_1 > w_2 > w_3 > \ldots$$

The result is sorted according wi in order to give the N first words (Top-N) that are candidate as keywords for the document. Our system provides the possibility to authors to change, edit or extend the keywords list given by system in order to overcome some limitations recognized by the TF-IDF approach [21],[14].

The following example shows the metadata encoded in XML [19].

```xml
<lom:general>
  <lom:title>
    Title of the Learning Object
  </lom:title>
  <lom:string language="en">
    Title of the Learning Object
  </lom:string>
</lom:general>
```

<om:language>en</om:language>
<om:keyword weight="0.34">
 Keyw_1
</om:keyword>
<om:keyword weight="0.28">
 Keyw_2
</om:keyword>

Learning Object Rating Phase

After the construction of metadata, our system accesses the user database to find a set of similar users in order to collect their score on learning object being created. The purpose of this idea is to benefit of authors’ experiences in order to get a final score of the learning content. To achieve this, we refer to the recommendation systems technology which provides relevant techniques used by this work.

In the field of technology-enhanced learning (TEL), there are many works focused on recommendation system to retrieve suitable and pertinent learning object to the end-user (students). In [28] applying collaborative filtering directly to matrix user-rating in context of recommending music, a system have been proposed for recommendation of the learning resources, it integrates a collaborative filtering module that operates with ratings offered by users and equipped with inference rule engine. Another study is the LORM tool (Learning Object Recommendation Model) [27]. It uses a hybrid method that recommends a preference-based and correlation-based learning objects for the learners. This tool agreed an ontological model for performing semantic discovery. To summarize, the most rating-based systems for learning object manipulation was concentrated solely on the standpoint of the learner, i.e. the feedbacks returned by the learner are used to improve the learning object. However, this presents some limitations because the learner makes comments on what he/she sees in content but in the case of a shortage or lack of reference or something important, the learner could not be able to detect this lack in the majority of the cases.

Many other works are based on recommender system technique to deliver the suitable learning content, we find that the most of these systems are focused on the learner activity in which we discussed the disadvantages in the above section. We find in [17] a review of the most recommender system focusing on teachers (as expert community).

Learning Objects Similarity Module

In literature, the cosine similarity [9] is frequently used when trying to determine similarity between two documents. Generally, the document is represented as vector and the cosine similarity calculate the inner product space that measures the cosine of the angle between them.

Giving two documents, A and B, the cosine similarity between A and B is:

$$\text{Similarity} = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \cdot \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

Our approach calculates the similarity between given document and all LOR documents by using Cosine Similarity which is used in order to recommend a
subset of LOR documents that are considered as pertinent.

User Potential Filtering

After pre-processing and weighting the learning object, the next step is to collect rating data about the learning object being created from all participants in order to calculate the average rating score. Our choice for giving a teacher’s cluster is the K-Nearest Neighbor algorithm.

Known as user-user collaborative filtering, K-Nearest Neighbor is a supervised learning algorithm, which is the most common method used for prediction, estimate, and classification [10], [20]. We need this algorithm in order to give predictions for the learning objects for each user that has not rated the object.

The process of this phase is as follows:

1. Calculate the similarities between active users (T1) and all users (Tj)
2. Select N top users given by step 1. (N represents the max number of selected users)
3. Calculate the prediction for the learning object.

One of the successful methods of similarity measures used in collaborative filtering field is the Pearson Correlation Coefficient (PCC) [10] which measures the weight between two users (x, v) as follows.

$$\text{sim}(x, v) = \frac{\sum W \times (r_{x,j} - \bar{r}_x) \times (r_{v,j} - \bar{r}_v)}{\sqrt{\sum W \times (r_{x,j} - \bar{r}_x)^2} \times \sqrt{\sum W \times (r_{v,j} - \bar{r}_v)^2}}$$

Where \(N = \text{object}_x \cap \text{object}_v \) represents the objects rated by both x and v, \(r_{x,j} \) is the set of objects rated by user x and \(\bar{r}_x \) is the average rating of user x.

Predicting Missing Data

Collaborative filtering suffers a problem when one or more users did not want to evaluate the object. In this situation we must predict their rating score. Thus after similarity computing, the system constructs a neighborhood N for each user and predicts the rating of user U for learning object being created using the formula below:

$$p = \bar{r} + \frac{\sum W \times \text{sim}(u, u') \times (r_{w} - \bar{r}_w)}{\sum W \times \text{sim}(u, u')}$$

Our work is destined for authors in order to help them achieve their goal in education content creation task. This system can be useful for novice authors which are strongly supported in our system. However, the competencies of new authors are unknown for our database (situation known as cold-star in many filtering systems).

The problem of cold-start consists essentially in the following: a) recommendations of existing objects for new users, b) recommendations of new objects for existing users c), recommendations of new objects for new users [20]. Many approaches attempt to overcome this problem, most of them try to propose items to users in order to rate it at the beginning of their profile building or using stereotypes and/or asking users to answer questions related to their preferences.

In our context we considered that new users come to our system in order to create new learning objects. We adopt the content information to deduce similarities from existing objects compared to new objects. However, it seems that an efficient similar users’ set can find it using keywords’ list, i.e. the documents’ list retrieved is used to give all users that rate or previously created document list and sorting them. Creating data provides a solid proxy for eliciting user competencies (rule6 but generally give a small set of users especially when we specify the domain field, so to solve this inquiry we use the rating data to extend the users list (rule7) because the fact that a high score might imply the user has really used the object or, at least is comfortable with it [26].

More formally, the users list is:

$$N = \{A_c \cup A_r\}$$

Where Ac represents the users’ set that created and Ar represents the users’ set that rated one learning objects or more. This learning object must have at least one of keywords’ lists. This formula aims to retrieve all users who have participated by rating or creating one or more learning objects similar to learning object being created. This set of users is given by rule6 and rule7. However, this formula can lead to a big list of users (database increased over the time). We use the formula below in order to limit the above list (top N users selection).

$$p_i = \sum_{k=1}^{M} \#(C_k) + \beta \sum_{k=1}^{M} \#(N_k)$$

Where \(C_k \) represents how many times the keyword k appears in documents created by user I and \(N_k \) represents also how many times the keyword k appears in documents rated by user I. The factor \(\beta \) is a constant that can be parameterized depending on the activity in the system for weighting the creation task opposite the rating task, its range is between (0,1).

At the end of this step and after collecting all user scores (predicted and data value), the system calculates
the average (which represents the final score for the learning object) in order to update/create the user profile and/or notify the user to revise his/her learning object if the score given was less than a threshold adjusted by the active user.

$$\text{Avg} = \text{final score}_{\text{LO}} = \frac{\sum_{i=1}^{N} f_i}{N}$$

The new metadata elements proposed in this work are fulfilled automatically using predefined rules. The suitable context information and unsuitable context information are retrieved using rule3 and rule8 respectively. So, after gathering data we apply the algorithm below in order to retrieve suitable and unsuitable context information which are represented as a vector with respect to the bandwidth, screen size and screen resolution relating to the learning object.

Input: dataset of suitable and unsuitable context

Output: suitable Context vector and unsuitable context vector

Foreach element in (suitable_Context) do

 * If suitable_Context[i] <= OneOf(Unsuitable_context[i]) then
 * Clear (Unsuitable_context[i])
 * Suitable_Context := min(Suitable_Context[i])

Foreach elements in Unsuitable_Context do

 * Unsuitable_Context := max (Unsuitable_Context[i])

Figure 3. Vector of context data

The next example shows the obtained suitable and unsuitable context data. The problem we faced in such situation is how to make decision for end user about context suitability which can take any value.

Table 3. Example of extracted context information

<table>
<thead>
<tr>
<th>Score</th>
<th>resolution (Mpixels)</th>
<th>Size (inch)</th>
<th>Bandwidth (kb/s)</th>
<th>Suitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Like</td>
<td>1.2</td>
<td>4</td>
<td>1.024</td>
</tr>
<tr>
<td>U2</td>
<td>Like</td>
<td>0.8</td>
<td>3.5</td>
<td>7.168</td>
</tr>
<tr>
<td>U3</td>
<td>Like</td>
<td>0.9</td>
<td>6</td>
<td>0.512</td>
</tr>
<tr>
<td>U4</td>
<td>Not provided</td>
<td>2.1</td>
<td>5</td>
<td>0.128</td>
</tr>
<tr>
<td>U5</td>
<td>Like</td>
<td>2.2</td>
<td>19</td>
<td>0.064</td>
</tr>
<tr>
<td>U6</td>
<td>Like</td>
<td>2.1</td>
<td>15</td>
<td>7.168</td>
</tr>
<tr>
<td>U7</td>
<td>Not provided</td>
<td>1.2</td>
<td>3.5</td>
<td>2.048</td>
</tr>
</tbody>
</table>

After running the algorithm, our system will get the suitable and unsuitable context information (Cs) and (Cus) respectively. This dataset is considered as training set used to generate decision model for any learning content request carried out by end-users (learners) taking into account their context (Ci). The code below shows the prediction task.

Input: CS, CUS, Ci

Output: Suitability or Unsuitability of Ci

If ((Ci[k] > CS[k]) or ((Ci[k] < CUS[k])) then

Begin

 * If (Ci[k] > CS[k]) then
 * the user context is suitable
 * If (Ci[k] < CUS[k]) then
 * the user context is not suitable

End

Else

perform suitability (Ci);

Where K denotes the context type (resolution, screen size, bandwidth) and perform_suitability is a function that has one parameter that represents the context data of the end user and returns the probability of Ci to specific class (suitable or unsuitable).

In this paper we adopted the Bayesian method to estimate the likelihood of specified context value belonging to the suitable class or not. The Naïve Bayesian is powerful algorithm that provides high precision and speed treatment in vast capacity data compared to that of neural network algorithms or decision trees [16] used for classification task.
Given X as vector data of learner context in order to be classified in its class (suitable or unsuitable), and for Y can be supposed that X is integrated in a class of C. The probability in which Y will happen as instance data of X is generated and can be calculated as P(Y|X) which represents the prior probability.

The formula below is used to calculate P(Y|X).

\[P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \]

Where

- P(Y|X) is the posterior likelihood of class (Y) given predictor (X).
- P(Y) is the prior likelihood of class.
- P(X|Y) is the probability which is the probability of predictor given class.
- P(X) is the prior likelihood of predictor.

Because our training data contains a continuous attribute \(x_i \), the probability distribution of \(x_i \) given a class C, \(p(X=x_i|C) \) can be computed by plugging \(x_i \) into the equation for a Normal distribution (Gaussian) parameterized by the mean \(\mu \) and standard deviation \(\sigma \). That is,

\[p(x_i|y) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \]

Where \(\mu = \frac{\sum_{i=1}^{n} x_i}{n} \) and \(\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \)

The following formula is calculated to determine the class of the target item,

\[P(x|C_j) = P(x_1|x_2, ..., x_n|C_j)P(C_j) \]
\[= P(x_1|C_j)P(x_2|C_j) ... P(x_n|C_j)P(C_j) \]
\[= P(C_j) \prod_{k=1}^{n} P(x_k|C_j) \]

The class that produces the highest or maximum probability is the classification for input data

\[C = \arg\max P(C_j) \prod_{k=1}^{n} P(x_k|C_j) \]

And the prior probability \(P(C_j) \) for each main category (suitable and not suitable) is 1/2 (as there are 2 categories).

7. System Implementation and Experiments

We have developed a tool for learning object creation task. It consists of a set of features provided to help authors to know the reliability of their educational materials, the user of our system must be registered or logged-in through an interface provided by the system. In case of new user, the system shows an additional form that contains all user information needed by our system.

After that, the system shows a notification when the registered user is requested to evaluate another learning object or the user can create a new learning object or consult the score of her/his earlier learning object.

In this work we have implemented a server-based system over internet where the server consists of database that stores the learning content, metadata, rating data and users’ profiles. And the client side provides functionality for the establishment of the learning objects creation and rating task. In the case of the last one, the system stores the contextual metadata such as: screen size, resolution, internet bandwidth, the rating data and the contextual metadata are uploaded to a remote application server.

<technical>
<Requirement>
<Suitable_context name="screen size">
<value unit="inch">7</value>
</Suitable_context>
</Requirement>
<Unsuitable_Context name="screen size">
<value unit="inch">4</value>
</Unsuitable_Context>
...
</technical>

As experiment’s phase, our work is composed of two parts. The first one based on the collaborative filtering in order to get a final score allows us to improve the learning content and the second part is the extraction of context information to deal with the outputs to end user taking into account his context. For the first part we use the recall, F-measure, and precision to evaluate the accuracy metrics of recommendation algorithm.

In fact, the outputs of our recommendation algorithm contain two sets of users named positive participants and relevant participants. The positive participants are the users retrieved by our algorithm that rated the learning content and the relevant participants set, which is the set of users who have been retrieved by our algorithm and not provide their rate. This set is devised on two subset negative relevant participants and negative relevant participants caused by their context (inappropriate context)

To determine the accuracy metrics, we put \(N_p \) the set of positive participants which can be seen as true result of the outputs of recommendation algorithm and \(N_r \) the set of relevant participants which can be seen as true negative outputs

\[\text{precision} = \frac{N_p}{N_p + N_r} \]
Where \(N_c \) represents the number of users which have an inappropriate context counted by our context extraction algorithm. The purpose of the second part is to make decision that a specific configuration represented as a vector \((c_i, c_j, \ldots)\) is suitable or unsuitable to use the learning object. For this second part we report the performance evaluation result of the proposed data extraction method using empirical user study approach. We perform a sequence of tests on the platform of our university in which we integrated our database on the server web application and the web application is distributed over many devices. We have supplied the basis to start this test with 65 users (teachers) and 18 learning objects of various form (text, multimedia, ...) on one single topic. The following is an extract that shows 11 participants whose 7 users have given their rate and 4 users did not provide their rates which requires us to estimate their rating score.

Table 4. Example of training data

<table>
<thead>
<tr>
<th>Score</th>
<th>Resolution (M-p)</th>
<th>Size (inch)</th>
<th>B.W (Mb/s)</th>
<th>suitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Like</td>
<td>1.2</td>
<td>4.6</td>
<td>1,024</td>
</tr>
<tr>
<td>U2</td>
<td>Like</td>
<td>0.8</td>
<td>4.5</td>
<td>2,048</td>
</tr>
<tr>
<td>U3</td>
<td>Like</td>
<td>0.9</td>
<td>6</td>
<td>0.512</td>
</tr>
<tr>
<td>U4</td>
<td>Like*</td>
<td>0.4</td>
<td>3.8</td>
<td>0.128</td>
</tr>
<tr>
<td>U5</td>
<td>Like</td>
<td>2.2</td>
<td>5</td>
<td>0.64</td>
</tr>
<tr>
<td>U6</td>
<td>Like</td>
<td>2.1</td>
<td>5</td>
<td>1,048</td>
</tr>
<tr>
<td>U7</td>
<td>Like*</td>
<td>0.5</td>
<td>3.5</td>
<td>0.128</td>
</tr>
<tr>
<td>U8</td>
<td>Like</td>
<td>1.3</td>
<td>4.4</td>
<td>1,024</td>
</tr>
<tr>
<td>U9</td>
<td>Like*</td>
<td>0.6</td>
<td>3.3</td>
<td>0.056</td>
</tr>
<tr>
<td>U10</td>
<td>Like*</td>
<td>0.5</td>
<td>3.5</td>
<td>0.128</td>
</tr>
<tr>
<td>U11</td>
<td>Like</td>
<td>1.2</td>
<td>5</td>
<td>1,024</td>
</tr>
</tbody>
</table>

Where (*) denote predicted score. The "like" user attention implied that the user has given a high score for the learning object.

After applying the extraction algorithm, we obtain as suitable context data the vector \((0.8, 4.4, 0.512)\) and unsuitable context data the vector \((0.6, 4, 0.256)\).

In order to classify an input data for example \((0.9, 3.2, 0.366)\) which represents respectively the screen resolution, screen size and bandwidth, we calculate the probability using naïve Bayes method with Gaussian distribution. For the above example we obtain \(P(\text{yes}) = 3.2391\times10^{-4}\) and \(P(\text{no}) = 1.7480\times10^{-7}\) for which our system makes a decision that this configuration is suitable for using this learning object.

In order to identify common misclassifications, we have calculated the confusion matrix [18] using Matlab framework, a confusion matrix contains information about actual and predicted classifications done by a classification system. A confusion matrix illustrates the accuracy of the solution to a classification problem. Our confusion matrix shows that the classification accuracy is very encouraging with minor errors as shown in figure below.

Figure 5. Confusion matrix

8. **Discussion & Conclusion**

In this paper, we proposed a collaborative filtering-based solution to improve the recommendation task by trying to detect the suitable and unsuitable context information concerning resources’ hardware information in order to deliver the education materials taking into account the context information of the target user. In this work, we investigate the application of semantic web technologies to the building user profile with focus on rating data and user attention. We assume in this study that the user context plays a very important role on the rating task and to evaluate the proposed approach we developed a tool-based authoring environment. This system enables rating and creating (or editing) of the learning content compliant to the user’s knowledge of the subject domain. These learning objects are gathered into repository with its
metadata available for further use. In general, we can state that the proposed method can substantially improve the recommendation process taking into account information of user context. This last one is gathered throw monitoring and analyzing of user behaviors. We can state that our method remains generic which can be applied with other contextual information like location and time. On one hand, the success of this approach is situated in user behavior analysis to retrieve required context information that can be used in recommendation process without having to be identified manually by the owner of the object. On the other hand, this approach presents some limitation to apply it with other contextual information which requires that contextual information studied have a huge impact on the object.

As future work, we want to achieve out more experiments that use different user profiles and knowledge areas. We also want to study other contextual information like location and time and analyze their impact on the recommendation process. In this way, we could do a further validation of the effectiveness of our work.

References

