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Abstract – Automated Machine Learning (AutoML) 
utilizing meta-learning (M-L) has gained prominence 
in the scientific community. Current M-L methods 
necessitate substantial data and computational 
resources for extracting meta-features encoding data 
properties. However, the time needed for meta-feature 
extraction exceeds that for predictions in M-L systems. 
This article proposes a domain-specific M-L paradigm 
tailored to social science, aiming to identify universally 
applicable meta-features in social science data. 
Investigating domain-specific properties, the study 
discerned common meta-features across social science 
domains, facilitating an efficient AutoML strategy with 
reduced data requirements. Ninety meta-features, 
clustered into eight groups characterizing social 
science data, were employed, focusing on education 
and business domains. An analysis of 46 datasets 
revealed domain-specific variations in meta-feature 
values, confirmed by Wilcoxon tests. Notably, certain 
meta-features exhibited consistency across social 
science domains, demonstrating potential for cross-
domain AutoML adoption. This research introduces a 
targeted M-L approach, optimizing AutoML efficiency 
for social science applications by identifying common 
meta-features across diverse domains. 
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1. Introduction

Many machine learning algorithms (MLA) are 
developed and applied in a wide spectrum of 
domains. Their application can be time-consuming 
and complex and it is necessary to streamline the 
procedure of choosing algorithms automatically. The 
"no free lunch" theory states that there is not one best 
algorithm that works in every circumstance [43], 
[28]. Current approaches rely on "trial and error," 
which is inadequate for solving complicated issues. 
The meta-learning (M-L) was developed by applying 
a data-driven methodology and learning from 
experience. In the realm of MLA, M-L refers to the 
approach of acquiring knowledge from past 
experiences, gained through the application of 
diverse algorithms on various datasets [11]. This 
concept encompasses techniques that can incorporate 
information about both datasets and models (such as 
configuration and performance metrics). The data 
used in M-L approaches is called meta-data, where 
meta-features (MF) are extracted so M-L can be 
performed. Extracting MF is the initial step in the M-
L process, which is a challenging task. The meta-
feature can be regarded as a collection of metrics 
designed to consistently depict the attributes of 
distinct problems [16]. 

The success of M-L relies significantly on the 
type and quality of MF [9]. Therefore, it is vital to 
examine a diverse array of potential candidates [57].  

In the existing literature, researchers have put 
forth different sets of MF, with these features being 
notably contingent on the nature of the problem at 
hand [58]. Consequently, it becomes essential to 
identify suitable MF tailored to specific problem 
types [16]. However, prior investigations into MF 
have not specifically targeted particular domains.  

By applying the “no free lunch” theory in this 
context, it is possible to conclude that MF values for 
a dataset in one domain may not be the same in 
another domain. Thus, this paper deals with three 
research questions: 
a. What are the properties of education datasets?
b. What are the properties of business datasets?
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c. Do the properties differ depending on the 
domain? 
This study is motivated by two primary 

objectives. First, the data properties of the education 
and business datasets were empirically examined.  
Second, by using a statistical test, a comprehensive 
comparison of the properties of these different 
domains, measured by MF, was performed. Hence, 
we are directly tackling the research requirements 
highlighted by: 
a. Chu et al. [16], MF are problem-dependent, and 

more studies should identify appropriate MF 
tailored to specific problem categories. 

b. Monteiro et al., the principal source of challenges 
in MLA stems from the novel properties exhibited 
by data [41]. Furthermore, the M-L approach is 
particularly important for business domains, since 
it requires a fast deployment of analytical 
techniques.  

c. Romero et al., studies addressing MF are limited 
in the number of MF that are used [47]. Their 
conclusion emphasizes the necessity for a more 
extensive range of MF to effectively capture the 
relevant features of educational data. 

d. Kanda et al., the success of M-L depends on the 
quality of the MF [29]. 
The following sections of the paper are structured 

as follows: Section 2 provides the base regarding M-
L and data properties measured by MF. In section 3, 
the research methodology is outlined, encompassing 
8 groups of MF, 46 datasets derived from 2 domains 
within the social sciences, and the utilization of the 
Wilcoxon rank sum test for discerning distinctions 
between two independent sample groups. Section 4 
showcases the meta-feature performance across all 
datasets, examining variations between business and 
education data. Finally, section 5 concludes the paper 
by presenting guidelines for future research. 

 
2. Background 

 
The application of M-L for algorithm selection 

involves employing the automated machine learning 
(AutoML) approach. This approach aims to generate 
meta-knowledge by establishing connections 
between data properties, represented by MF, and 
subsequently assessing the performance of MLA. 

Researchers have explored the application of M-L 
to address challenges in algorithm selection [41]. 
Various studies, such as [17] and [25], suggest the 
utilization of MF to enhance the AutoML process. 
MF provides insights into the correlations between 
data properties and the efficacy of MLA, offering a 
basis for selecting the most suitable algorithm for a 
novel problem [54]. The use of M-L to select 
algorithms has been studied on the general level.  
Several studies have made significant contributions 

in the past, projects such as STATLOG [32], 
METAL [12], and NOEMON [3]. Several papers 
highlight that the features of a dataset play a crucial 
role in influencing the performance of MLA, which 
demonstrates that the dataset's MF can determine 
which algorithm is optimal [15], [20], [36], [31]. Ali 
and Smith's study prove that understanding the 
dataset properties is required for a learning algorithm 
selection, whereas Song and Wang pointed out 
challenges of the optimal MLA selection since it 
depends on the dataset that is being used [53].  Zhang 
et al. concentrated on the characteristics of one 
dataset, having attempted to determine which 
technique was better by thoroughly comparing 
various approaches [61].  Bogatinovski et al. 
conducted a comprehensive meta‐learning study to 
date, where 40 datasets together with 50 MF were 
analysed [10]. Using meta-modeling a correlation 
between MF and technique accuracy was found. 
Monteiro et al. argue that the increase in dataset 
complexity makes it more challenging for an expert 
to comprehend the MF and therefore to select the 
optimal algorithm [41]. Lorena et al. emphasized the 
need for a data-driven approach for an efficient 
algorithm selection method, as well as the 
significance of investigating datasets' domain 
properties. The reasoning for this is the assumption 
that similar datasets/domains should have similar 
learning patterns when applying MLA [39]. 

Wu and Lu claim that although some researchers 
have contributed to the automation of algorithm 
selection based on data features in some domains, 
this does not apply to datasets in other domains [60]. 
Only a few papers indicate domain-specific M-L. As 
an illustration, Sivakumar et al. conducted a 
comparison of algorithm performance in the medical 
domain, specifically focusing on early cancer 
diagnosis, where classification methodology, based 
on their examination of supervised learning 
algorithms on various datasets, was proposed [52]. 
Garouani et al. investigated the manufacturing 
domain by creating AMLBID (AutoML tool for Big 
Industrial Data), which is a novel AutoML system 
that relies on M-L, which generates a ranked list of 
all candidate algorithms given a dataset, based on 
their expected performance and the desired 
evaluation metric (e.g., predictive accuracy, 
precision, or recall) [27].  

This paper makes a noteworthy contribution to 
domain-specific M-L, particularly emphasizing the 
domain of social sciences. The pervasive influence of 
digital systems on our daily activities results in 
substantial data generation during user interactions. 
This data, utilized in social science research, is 
characterized by its complexity and dynamism, 
encompassing both technological elements and social 
interactions. 
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Two different areas of social science are 
examined in this study, business, and education. 
Academic behavior and achievement are predicted 
based on student data that is collected from 
kindergarten through higher education.  

Li, Wang, and Wang underscored the importance 
of taking into account data properties during the 
development of predictive models in the field of 
education [38], while Cui et al. emphasized the need 
to improve MLA applications and provide insight 
into the performance of algorithms for specific 
problems [18]. 

The business domain is indirectly influenced by 
education, since upon graduation, students enter the 
business world. According to Bergmann et al., the 
entrepreneurial domain, with its specificities, lacks a 
systematic study of relationships between dataset 
properties and methodological capabilities [7]. 
Researchers that study entrepreneurial activity, for 
instance, should be aware that they are dealing with 
"rare events" (class imbalance problem, where one 
value of the dependent variable occurs more 
frequently than the other).  

Literature review showed that intelligent data 
analysis is insufficiently represented in social 
sciences, not having any research that is focused on 
examining the characteristics of datasets specifically 
in social sciences. Also, there are no M-L 
frameworks for specific social science problems. 
This research intends to fill these gaps. 

 
3. Research Design 

 
The proposed approach comprises three steps. 

Initially, datasets were extracted from publicly 
available repositories. Subsequently, meta-feature 
values were calculated for each dataset. Finally, the 
Wilcoxon rank sum test was employed to investigate 
disparities between the two domains and assess 
whether significant differences exist between them. 

 
3.1. Data Description 

 
Datasets are extracted from two publicly available 

repositories that are widely used, containing 
hundreds of classified datasets: (i) UCI Machine 
Learning Repository, and (ii) Journal Data in Brief. 
Appendix 1 provides information about used 
datasets, along with source references. Datasets from 
1 to 33 are categorized as business datasets, whereas 
datasets from 34 to 46 are categorized as education 
datasets. 

 
3.2. MF Description 

 
MF were computed using the Python Meta-

Feature Extractor (PyMFE) package.  

This package offers a comprehensive collection of 
MF proposed in recent literature, facilitating their 
extraction. Further details about meta-feature 
extractor (MFE) packages, available in both Python 
and R, can be explored in [1]. 

This package provides the following MF groups:  
a. General: Encompasses basic measures that offer 

general aspects of the datasets, including metrics 
like “the number of attributes and instances" [46]. 

b. Statistical: Involves measures that capture the 
“statistical properties of the data, providing 
insights into data distribution: average, standard 
deviation, correlation, and kurtosis” [46]. 

c. Information-theoretic: “Incorporates measures 
from the information-theory field, based on 
entropy. These measures assess the amount of 
information in the data and its complexity” [46]. 

d. Model-based: Encompasses “measures designed 
to extract characteristics from predictive learning 
models. Often based on decision tree (DT) model 
properties” [46], they are referred to as DT-based 
MF and may also be induced by other MLA 
models. 

e. Landmarking: Involves “measures based on the 
performance of a set of fast and simple learning 
algorithms” [46]. These measures characterize 
supervised problems and are indirectly derived 
from the dataset. 

f. Clustering: Encompasses measures related to the 
extraction of information about the dataset using 
internal and external validation indices. “Internal 
indices only consider computed clusters, while 
external indices require class values to assess 
partition quality” [46]. 

g. Concept: Focuses on estimating “the variability of 
class labels among examples and their density” 
[46]. 

h. Itemset: Involves “characterizing binary item sets 
that capture the distribution of values for both 
single attributes (one_itemset) and pairs of 
attributes (two_itemset)” [46]. 

i. Complexity: Aims “to estimate the difficulty in 
separating data points into their expected classes” 
[46]. The complete survey of the complexity 
measures can be found in [39]. 
In the M-L literature, the initial three groups 

outlined earlier are considered the most prevalent and 
conventional approaches for data characterization. 
The fourth and fifth groups rely on MLA to derive 
model complexity or performance measures. The 
remaining groups are not widely employed in M-L, 
primarily due to high computational complexity or 
domain bias. Nevertheless, they may prove valuable 
in specific learning scenarios or M-L problems [46]. 

In this analysis, the MF shown in the first column 
of Table 1 were calculated.  
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Their definitions are given in previous papers [2], 
[4], [5], [6], [8], [13], [14], [19], [21], [22]. [23], 
[24], [26], [30], [33], [34], [35], [37], [39], [40], [42] 
[43], [44], [45], [46], [48], [49], [50], [53], [55], [56]. 
Mean and respective standard deviations were used 
for aggregation form for the MF. 

 
3.3. Methods 

 
The Wilcoxon rank sum test, a nonparametric 

statistical test method in the field of statistics, was 
used in this study. The details on the test can be 
found in [51]. The Wilcoxon rank sum test was 
applied because: 
(i) samples in the two collections do not follow the 

normal distribution, 
(ii) samples from the two collections are of varying 

lengths. 
The test was used to investigate if there were 

significance based on the p-value. The value of p = 
0.05 is set up as a boundary of significance in this 
research. 

Two approximations are usually applied in 
Wilcoxon test statistics, normal and the chi-square, 
both of them using significance at a p-value of 0.05. 
The conclusion drawn was that there exists a 
noteworthy difference in the meta-feature values 
between domains, and a disparity in the meta-feature 
means is observed depending on the domain when 
such significance is attained. The normal and chi-
square tests are based on the asymptotic distributions 
of the test statistics. 

 
4. Research Results and Discussion 

 
Research analysis included 46 datasets: 33 

categorized as business domain datasets, and 13 as 
educational domain datasets. For each of the datasets, 
MF were calculated, leading to a total of 90 MF. 
From the initial set of MF, 3 general MF were 
excluded: nr_cat, cat_to_num, num_to_cat, since 
there are no categorical features in the datasets. 6 
general MF, 39 statistical MF, 24 model MF, 4 
information-theory MF, 8 cluster MF, 4 concept MF, 
4 itemset MF, and 3 complexity MF were used in this 
study. 

To evaluate if differences were found, a Wilcoxon 
test was performed. Table 1 provides the results of 
the Wilcoxon test statistics. 

Test results revealed statistically significant 
differences in 61 MF among data from two domains. 
Those MF describe educational and business datasets 
in the same manner and can be used for both domains 
to develop a proficient meta-model capable of 
recommending the most appropriate MLA. 

 
 

Table 1.  Page layout description 
 

  Domain Wilcoxon test 
Meta-feature EM BM Z p 
General MF 
nr_attr 26,54 22,30 0,95 0,3411 
nr_bin 32,81 19,83 3,00 0.0027** 
nr_inst 20,52 31,08 2,39 0.0168* 
nr_num 26,54 22,30 0,95 0,3411 
attr_to_inst 25,08 22,88 0,49 0,6256 
inst_to_attr 30,62 20,70 2,44 0.0248* 
Statistical MF 
Cor.mean 30,08 18,50 2,76 0.0057** 
Cor.sd 28,38 19,23 2,18 0.0291* 
Cov.mean 35,77 18,67 3,88 0.0001** 
Cov.sd 35,38 18,82 3,76 0.0002** 
eigenvalues.mean 33,85 19,42 3,27 0.0011** 
eigenvalues.sd 33,77 19,45 3,24 0.0012** 
g_mean.mean 25,31 16,48 2,31 0.0210* 
g_mean.sd 24,15 17,08 1,85 0,0648 
h_mean.mean 25,69 17,15 2,19 0.0258* 
h_mean.sd 24,88 16,70 2,14 0.0325* 
t_mean.mean 33,00 19,76 3,00 0.0026** 
t_mean.sd 32,46 19,97 2,83 0.0047** 
iq_range.mean 33,62 19,52 3,20 0.0014** 
iq_range.sd 33,08 19,73 3,03 0.0025** 
Kurtosis.mean 32,08 20,12 2,71 0.0068** 
Kurtosis.sd 31,69 20,27 2,59 0.0096** 
Mad.mean 33,15 19,70 3,05 0.0023** 
Mad.sd 33,08 19,73 3,03 0.0025** 
Max.mean 34,31 19,24 3,42 0.0006** 
Mean.sd 33,00 19,76 3,00 0.0027** 
Median.mean 32,62 19,91 2,88 0.0040** 
Median.sd 29,23 21,24 1,81 0,071 
Min.mean 29,77 21,03 1,98 0.0479* 
Min.sd 27,00 22,12 1,10 0,2698 
nr_cor_attr 29,15 21,27 1,78 0,0729 
nr_norm 31,54 19,55 2,57 0.0129* 
nr_outliers 25,77 22,61 0,71 0,4791 
Range.mean 34,54 19,15 3,49 0.0005** 
Range.sd 33,04 19,74 3,01 0.0026** 
sd.mean 34,38 19,21 3,44 0.0006** 
sd.sd 33,54 19,55 3,17 0.0015** 
var.mean 33,85 19,42 3,27 0.00111** 
var.sd  33,85 19,42 3,27 0.00111** 
skewness.mean 20,46 24,70 -0,95 0,3414 
skewness.sd 13,62 27,39 -3,12 0.0018** 
Sparsity.mean  26,58 22,29 0,97 0,3352 
Sparsity.sd 26,54 22,30 0,95 0,3413 
Information - theory 
attr_conc.mean 34,54 19,15 3,49 0.0005** 
attr_conc.sd 31,23 20,45 2,44 0.0147* 
attr_ent.mean 22,08 24,06 -0,44 0,6605 
attr_ent.sd 26,70 22,23 1,01 0,3113 
Model based 
leaves 36,50 18,38 4,12 0.0001** 
leaves_branch.mean 35,96 18,59 3,95 0.0001** 
leaves_branch.sd 35,96 18,59 3,95 0.0001** 
leaves_corrob.mean 36,62 18,33 4,15 0.0001** 
leaves_corrob.sd 23,23 23,61 -0,07 0,9417 
leaves_homo.mean 33,81 19,44 3,26 0.0011** 
leaves_homo.sd 23,19 23,62 -0,09 0,9318 
leaves_per_class.mean 20,42 24,71 -0,98 0,3277 
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leaves_per_class.sd 21,08 24,45 -0,76 0,4489 
nodes 36,50 18,38 4,12 0.0001** 
nodes_per_attr 36,70 18,28 4,19 0.0001** 
nodes_per_inst 35,92 18,61 3,93 0.0001** 
nodes_per_level.mean 36,81 18,26 4,22 0.0001** 
nodes_per_level.sd 35,54 18,44 3,86 0.0001** 
nodes_repeated.mean 36,65 18,32 4,16 0.0001** 
nodes_repeated.sd 31,14 16,47 3,53 0.0004** 
tree_depth.mean 35,96 18,59 3,95 0.0001** 
tree_depth.sd 36,12 18,53 4,00 0.0001** 
tree_imbalance.mean 19,96 24,89 -1,11 0,2662 
tree_imbalance.sd 14,46 26,11 -2,62 0.0087** 
tree_shape.mean 17,27 25,95 -1,97 0.0491* 
tree_shape.sd 34,88 19,02 3,60 0.0003** 
var_importance.mean 22,92 23,73 -0,17 0,8643 
var_importance.sd 22,23 24,00 -0,39 0,6962 
Cluster 
ch 35,77 18,67 3,88 0.0001** 
int 35,86 18,64 3,90 0.0001** 
nre 36,62 18,33 4,15 0.0001** 
pb 16,54 23,72 -1,74 0,0816 
sc 26,50 22,32 1,03 0,3049 
sil 32,08 19,31 2,94 0.0033** 
vdb 35,77 18,67 3,88 0.0001** 
vdu 25,75 17,44 2,09 0.0368* 
Concept 
wg_dist.mean 18,65 19,19 -0,13 0,8979 
wg_dist.sd 19,77 18,58 0,30 0,7624 
Cohesiveness.mean 23,50 16,56 1,85 0,065 
Cohesiveness.sd 24,96 15,77 2,45 0.0143* 
Complexity 
t2 25,08 22,88 0,49 0,6256 
t3 35,92 18,61 3,93 0.0001** 
t4 28,46 21,55 1,56 0,1183 
Itemset 
one_itemset.mean 30,62 20,70 2,24 0.0248* 
one_itemset.sd 19,27 25,17 -1,33 0,1836 
two_itemset.mean 26,54 22,30 0,95 0,3413 
two_itemset.sd 4,86 26,91 -2,73 0.0063** 

* significant at p<.05, ** significant at p<.01 
 

Hereinafter, MF that have universal values at the 
social science domain level will be described, 
attempting to cover the main properties of social 
science data. 

Research results revealed similar patterns in the 
educational and business data concerning the 
following MF. 
a. general (nr_attr, nr_num, attr_to_inst) - The 

meta-feature number of attributes and derived MF 
number of numerical attributes and ratio of 
attributes to instances characterize the complexity 
of the given task. From the perspective of 
complexity, education and business datasets are 
similar, and those 3 MFs directly address the 
curse of dimensionality issue.  

b. Statistical (g_mean.sd, Median.sd, Min.sd, 
nr_cor_attr, nr_outliers, skewness.mean, 
Sparsity.mean, Sparsity.sd) - The geometric mean 
and median are mean values that are less affected 
by outliers.  

Those measures are equal in cases where there is 
an exact consistent multiplicative relationship 
between all numbers). It should be taken into 
account that g_mean and median do not differ in 
standard deviation, while differing in mean value. 
Datasets usually contain anomalies, also known as 
outliers, which should be detected and treated 
properly. Business and education data do not 
differ in the number of outliers and minimal 
values (aggregated by standard deviations), as 
well as minimum values which are strongly 
related to outliers. The overall correlation 
between attributes is also the same in education 
and business data. Skewness refers to a lack of 
symmetry in probability distribution, determining 
feature normality that will directly influence the 
selection of algorithms in terms of parametric or 
nonparametric choice. Sparsity “indicates the 
degree of discreteness of the values in each 
attribute” [50]. The ability to generalize it on the 
level of social sciences leads to simplification of 
the M-L process.  

c. information-theory (attr_ent.mean, attr_ent.sd) - 
Entropy determines one of the most important 
aspects concerning information that attributes 
bring about the class, tackling the class imbalance 
challenge. The entropy values for the education 
and business datasets show no differences, being 
to conclude that most attributes carry an equal 
amount of information. As stated earlier, there are 
no differences in business and education data 
regarding skewness. It is important to note that 
skewness and entropy are related, since a skewed 
distribution would mean low entropy and vice 
versa. So, it is possible to conclude that the 
presented results are consistent.  

d. model-based (leaves_corrob.sd, leaves_homo.sd, 
leaves_per_class.mean, leaves_per_class.sd, 
tree_imbalance.mean, var_importance.mean, 
var_importance.sd) - Average leaf corroboration 
quantifies the average strength of support for each 
tree leaf, with support measured by the number of 
training instances corresponding to the paths 
terminating in each leaf. This descriptor aims to 
gauge the level of support received by each 
element of the tree from the sample [6]. Leaves 
homogeneity refers to the ratio of the number of 
leaves to the tree's shape. It illustrates the 
distribution of leaves within the tree, reflecting 
the extent of attribute label correlations for the 
given task. [6] Leaves-related measures are 
indicative of model performance. Similar patterns 
in education and business data for these MF 
indicate similar concept complexities in the 
structure of both domain datasets. A balanced tree 
indicates that no leaf nodes are distanced from the 
root.   
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Variable importance meta-feature shows no 
difference both in terms of mean value and 
standard deviation. This factor tackles feature 
informativeness [14], which shows similarities. 
The variable importance technique considers the 
correlation structure of the MF [59], being in line 
with the results of the statistical meta-feature 
correlation. 

e. cluster (pb, sc) - Pb meta-feature computes the 
correlation between class matching and instance 
distances [37]. Also, it refers to the correlation 
that indicates once again similarity in this aspect 
between education and business data.  Sc meta-
feature computes the number of clusters with a 
size smaller than a given size. [44] 

f. concept (wg_dist.sd, Cohesiveness.mean) - 
Concept MF were found to be related. 
Cohesiveness is similar to the weighted average 
(wg_dist) used for class variation, nevertheless, 
attends exclusively to the number of examples.  
[56]  

g. complexity (t2, t4) - Regarding t2, it reflects the 
data sparsity, while t4 “gives a rough measure of 
the proportion of relevant dimensions for the 
dataset” [39]. Both dimensions sparsity and 
correlation were previously found to be similar, 
proving the consistency of the results.  

h. itemset (one_itemset.sd, two_itemset.mean) - The 
pattern information provided by a one-item set 
explicitly conveys the information of each 
attribute individually. Conversely, the two-item 
set offers correlation information regarding pairs 
of attributes. Together, they describe 
complementary aspects of the dataset [53]. 
When considering their impact on the behavior of 

MLA, these MF can be handled equivalently in both 
educational and business data analysis. However, 
there are statistically significant differences between 
education and business data in other 61 MF, which 
should be taken into account when developing meta-
models in these two domains. The diversity of social 
science data among two domains, when looking at 
most of the measured MF, means that nowadays it is 
imperative to examine domain specificity of data 
characteristics. This is especially important regarding 
social data, which are becoming more and more 
dynamic. The speed at which businesses and 
educational institutions move these days, with ever-
faster engagements and transactions requires an in-
depth analysis of domain data. 

 
5. Conclusion 

 
M-L is determined by numerous aspects, such as 

data properties measured by MF, or hyperparameters 
optimization, among others. To achieve the success 
of M-L, the speed and explainability of the different 

aspects are crucial. This paper contributes to this 
matter by studying social science data MF. The main 
research problem in this paper was to extract meta-
feature values for social science data, identifying 
differences in meta-feature values among business 
and educational datasets.  

The response to the first research question is as 
follows: "The MF of education data exhibit high 
values across the majority of the measured MF." This 
statement also addresses the one segment of the 
second research question. The second question is 
answered with the following conclusion: “Business 
data have lower values for most of the MF”.  

Regarding the third question, the conducted 
experiments suggest that the most crucial features 
vary depending on the domain of origin. Thus, it can 
be concluded: "There are differences in all eight 
groups of MF between educational and business 
data." 

To the best of the authors' knowledge, this is the 
first paper that addresses the domain specificity of 
social science data and examines their characteristics 
in terms of MF. A thorough study of what are MF of 
datasets from the educational and business arena was 
provided, with the extraction of 8 sets of MF for 
education and business datasets. This research is 
needed to identify common aspects of both domains 
and may be significant in defining the topology of 
the dataset space. The solution to this problem is to 
use common MF on the social data level, while 
extracting subdomain-specific data properties for the 
different MF. 

Scientific contributions of this research are: 
a. systematic exploration of the huge number of MF 

that can explain social science data. These 
features will become the predictive features in the 
meta-models;  

b. the increased explainability of education and 
business data, as well as the improved speed of 
the M-L process through characteristics measured 
by MF, can lead to restricting the search in given 
configuration space for M-L; 

c. an empirical comparison of education and 
business data properties. 
The research findings contribute to a more 

profound understanding of social data, and the 
identified differences between datasets are expected 
to enhance the application of MLA in this context. 

Naturally, the results are constrained by the 
utilized data and MF. Future work aims to replicate 
the presented analysis scheme on a larger scale of 
data within the social sciences domain. The approach 
will be expanded to tackle multi-class problems and 
nominal attributes, as there remain numerous open 
issues to address. Employing a broader array of 
datasets may lead to increased generalization, 
thereby enhancing the interpretability of the results. 
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 Title of the dataset Link References 
1 Company Bankruptcy Prediction UCI Machine Learning 
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Bankruptcy Prediction Data Set 

Liang D., & Tsai C.F. (2020). UCI Machine Learning 
Repository. Retrieved from http://archive.ics.uci.edu/ml 

2 Wholesale customers Data Set UCI Machine Learning 
Repository: Wholesale 
customers Data Set 

Cardoso, Margarida G. M. S. (2014). UCI Machine 
Learning Repository. Retrieved 
from http://archive.ics.uci.edu/ml 

3 Data for the ins and outs of 
involuntary part-time employment 
all_baseline.xls 

https://www.sciencedirect.com/
science/article/pii/S2352340920
315651 

Borowczyk-Martins, D., & Lalé, E. (2021). Data for the ins 
and outs of involuntary part-time employment. Data in 
Brief, 34, 106686. 
https://doi.org/10.1016/J.DIB.2020.106686 

4 Data for the ins and outs of 
involuntary part-time employment 
all_reclassified.xls 
 

https://www.sciencedirect.com/
science/article/pii/S2352340920
315651 

Borowczyk-Martins, D., & Lalé, E. (2021). Data for the ins 
and outs of involuntary part-time employment. Data in 
Brief, 34, 106686. 
https://doi.org/10.1016/J.DIB.2020.106686 

5 Dataset on the perceptions of 
ordinary people on the persistence 
of bribery practices in Nigeria 

https://www.sciencedirect.com/
science/article/pii/S2352340920
314967 

Sani, A. S., & Abu Bakar, A. S. B. (2021). Dataset on the 
perceptions of ordinary people on the persistence of 
bribery practices in Nigeria. Data in Brief, 34, 106616. 
https://doi.org/10.1016/J.DIB.2020.106616 

6 Survey data of coronavirus 
(COVID-19) thought concern, 
employees' work performance, 
employees background, feeling 
about job, work motivation, job 
satisfaction, psychological state of 
mind and family commitment in 
two middle east countries 

https://www.sciencedirect.com/
science/article/pii/S2352340920
31533X 

Mgammal, M. H., & Al-Matari, E. M. (2021). Survey data 
of coronavirus (COVID-19) thought concern, employees’ 
work performance, employees background, feeling about 
job, work motivation, job satisfaction, psychological state 
of mind and family commitment in two middle east 
countries. Data in Brief, 34, 106661. 
https://doi.org/10.1016/J.DIB.2020.106661 

7 Data from an incentivized 
laboratory experiment on strategic 
medical choices 

https://www.sciencedirect.com/
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Ge, G., & Godager, G. (2021). Data from an incentivized 
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in Brief, 35, 106926. 
https://doi.org/10.1016/J.DIB.2021.106926 

8 Hedonic dataset of the 
metropolitan housing market – 
Cases in South Korea 
prices_busan.xlsx 
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00161X 

Song, Y., Ahn, K., An, S., & Jang, H. (2021). Hedonic 
dataset of the metropolitan housing market – Cases in 
South Korea. Data in Brief, 35, 106877. 
https://doi.org/10.1016/J.DIB.2021.106877 

9 Hedonic dataset of the 
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https://www.sciencedirect.com/
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Song, Y., Ahn, K., An, S., & Jang, H. (2021). Hedonic 
dataset of the metropolitan housing market – Cases in 
South Korea. Data in Brief, 35, 106877. 
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10 
 

Hedonic dataset of the 
metropolitan housing market – 
Cases in South Korea 
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Song, Y., Ahn, K., An, S., & Jang, H. (2021). Hedonic 
dataset of the metropolitan housing market – Cases in 
South Korea. Data in Brief, 35, 106877. 
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12 Retail customers’ satisfaction with 
banks in Greece: A multicriteria 
analysis of a dataset 
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Drosos, D., Skordoulis, M., Tsotsolas, N., Kyriakopoulos, 
G. L., Gkika, E. C., & Komisopoulos, F. (2021). Retail 
customers’ satisfaction with banks in Greece: A 
multicriteria analysis of a dataset. Data in Brief, 35, 
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13 A dataset of factors influencing 
consumer behavior towards 
bringing own shopping bags 
instead of using plastic bags in 
Vietnam 
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005102?via%3Dihub 
 

Nguyen, T. P. L. (2021). A dataset of factors influencing 
consumer behavior towards bringing own shopping bags 
instead of using plastic bags in Vietnam. Data in Brief, 37, 
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14 Digital adoption by enterprises in 
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data article 
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15 Dataset on social capital and 
knowledge integration in project 
management 
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Ekemen, M. A., & Şeşen, H. (2020). Dataset on social 
capital and knowledge integration in project management. 
Data in Brief, 29, 105233. 
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16 Data modelling consumer-
generated content usage for 
apparel shopping 
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science/article/pii/S2352340920
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Tobias-Mamina, R. J., & Kempen, E. (2020). Data 
modelling consumer-generated content usage for apparel 
shopping. Data in Brief, 31, 106035. 
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