
TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

726 TEM Journal – Volume 13 / Number 1 / 2024.

A Comparative Review of AI Techniques
for Automated Code Generation in Software

Development: Advancements, Challenges,
and Future Directions

Ayman Odeh P

1
P, Nada Odeh P

1
P, Abdul Salam Mohammed P

2

P

1
PDepartment of Software Engineering, Colleg of Engineering, Al Ain University, Al Ain, UAE

P

2
PSkyline University College, Dubai, UAE

Abstract –Artificial Intelligence (AI), as one of the most
important fields of computer science, plays a
significant role in the software development life cycle
process, especially in the implementation phase, where
developers require considerable effort to convert
software requirements and design into code.
Automated Code Generation (ACG) using AI can help
in this phase. Automating the code generation process
is becoming increasingly popular as a solution to
address various software development challenges and
increase productivity. In this work, we provide a
comprehensive review and discussion of traditional
and AI techniques used for ACG, their challenges, and
limitations. By analysing a selection of related studies,
we will identify all AI methods and algorithms used for
ACG, extracting the evaluation metrics and criteria
such as Accuracy, Efficiency, Scalability, Correctness,
Generalization, and more. These criteria will be used
to perform a comparative result for AI methods used
for ACG, exploring their applications, strengths,
weaknesses, performance, and future applications.

Keywords –Artificial intelligence, automated code
generation, deep learning, evolutionary algorithms,
machine learning, natural language processing.

DOI: 10.18421/TEM131-76
34TUhttps://doi.org/10.18421/TEM131-76 U34T

Corresponding author: Ayman Odeh,
Department of Software Engineering, Colleg of
Engineering, Al Ain University, Al Ain, UAE
Email: 34TUayman.odeh@aau.ac.aeU34T

Received: 03 October 2023.
Revised: 17 January 2024.
Accepted: 23 January 2024.
Published: 27 February 2024.

© 2024 Ayman Odeh, Nada Odeh & Abdul
Salam Mohammed; published by UIKTEN. This work is
licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

 The article is published with Open Access at
https://www.temjournal.com/

1. Introduction

AI is rapidly changing the software development
process, it has the potential to significantly improve
the software engineering process [1]. Software
development is a complex and demanding process
that involves analysis and coding phases [2], [3].
However, it is also known to be expensive, especially
in environments that adhere to procedures, standards,
and team structures [4]. Automated code generation
(ACG) mentioned in [5] is becoming increasingly
important to software development, especially
through the use of machine learning (ML) and
artificial intelligence (AI). It focuses on using a
transformer-based ML model to generate frontend
component code for angular, using behavior-driven
development (BDD) test specifications as input.
ACG techniques aim to automate repetitive and time-
consuming tasks, allowing developers to focus on
higher-level design and problem-solving. In recent
years, researchers have explored the utilization of
artificial intelligence (AI), particularly deep learning
(DL) techniques, for ACG due to significant
advancements in this field. The use of AIT
Techniques (AIT) in ACG has revolutionized the
software development field. Machine learning (ML)
and DL algorithms have been applied to automate
various aspects of the code generation process [6],
[7]. Researchers have conducted surveys and
systematic reviews to investigate the effectiveness of
different approaches, such as natural language
processing (NLP) and source code analysis, in
generating code automatically [8], [9]. Developers
have even been assisted in writing code more
efficiently by AI-powered coding companions like
those introduced by Amazon [10]. Also many of
application of AI in code generation has been
explored in different domains such as web
development, mobile applications, and industrial
automation [11], [12], [13].

mailto:ayman.odeh@aau.ac.ae
https://www.temjournal.com/
https://doi.org/10.18421/TEM131-76

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 727

This progress has led to the development of
models and tools capable of generating code from
natural language (NL) descriptions [14], sketches,
and other input forms [15], [16]. The significance of
these AIT is evident in the acceleration of software
development and the reduction of programming
efforts [17], [18]. However, challenges remain,
including evaluating the performance of AI-based
code generators and ensuring the quality of the
generated code [19], [20].

1.1. Problem Statement and Significance

The problem at hand is to evaluate and compare

different AIT for ACG in software development,
where AI can improve all phases of the software
development life cycle [21]. This research aims to
understand the strengths and weaknesses of various
AITs, assess their suitability for different code
generation tasks, and identify areas for improvement.

By providing a comparative review of AIT, this
paper aims to assist researchers and practitioners in
selecting appropriate techniques for ACG, ultimately
enhancing the efficiency and quality of software
development processes.

1.2. Aims and Motivation

The aim of this paper is to provide a

comprehensive and comparative analysis of AIT for
ACG in software development; and analyze
advancements, challenges, and future directions in
this field. By comparing different AIT, including
their strengths, weaknesses, and real-world
applications, the paper aims to facilitate informed
decision-making and promote the adoption of
effective AI-based code generation practices. The
motivation behind conducting a comparative review
of AIT for ACG in software development stems from
several key factors as shown in Table 1.

Table 1. Motivation factors and achieved objects

No Motivation factors Achieved objects
1 Advancements in AI To evaluate the effectiveness and identify strengths and

weaknesses of various AITs for ACG
2 Increasing Demand for Automated

Code Generation
To pinpoint the most effective AIT and assess their suitability
across diverse development scenarios.

3 Varied AIT in Code Generation Understanding the trade-offs and selecting the most appropriate
technique based on factors such as code quality, scalability,
and efficiency

4 Addressing Challenges and
Limitations

Identifying these challenges and assessing the extent to which
different AIT mitigate or exacerbate them. By understanding
the limitations, researchers can focus on improving these
techniques and practitioners can make informed decisions
about their implementation

5 Future Directions and Research
Opportunities

Identify gaps in the existing approaches and propose future
research directions.

1.3. The Paper Structure

The paper is organized as follows: Section 2

provides literature review and discussion of
traditional and AI approaches to code generation and
their limitations. In Section 3, we present
advancements in AIT for ACG. Section 4 discusses
the challenges and limitations of AI-based code
generation. Section 5 provides a comparative
analysis of these AITs, emphasizing their strengths
and weaknesses. Section 6 presents future directions
and research opportunities. Finally, Section 7
concludes the paper, summarizing the key findings
and providing recommendations for researchers and
practitioners.

2. Literature Review

This section summarizes the wide range of
methodologies and technologies that have
significantly aided the advancement of ACG. Our
investigation is divided into six critical approaches,
each representing a distinct viewpoint and
methodology in the field of code generation.

2.1. Traditional Approaches

Traditional automated code generation methods,

predating ML and DL algorithms, rely on rule-based
(RB) systems, template-based (TB) methods, and
other conventional programming techniques [22]. RB
code generation involves predefined rules or patterns
to transform high-level specifications into executable
code, particularly useful in domains with repetitive
and well-defined code patterns.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

728 TEM Journal – Volume 13 / Number 1 / 2024.

TB code generation utilizes pre-defined code
fragments with placeholders, allowing developers to
input specific values or logic. These templates are
instantiated by the code generation system,
commonly used in frameworks or specialized code
generators for rapid code generation in specific
languages or domains.

Additionally, traditional methods incorporate
domain-specific languages (DSLs) or modeling
languages [20], providing expressive, domain-
specific syntax for articulating code generation
requirements. The code generation system translates
these high-level specifications into actual code in the
target programming language. These traditional
techniques automate the code generation process
through predefined rules, templates, and domain-
specific abstractions [22]. Despite their effectiveness,
they often require manual efforts in rule or template
definition and may have limitations in handling
complex or evolving code generation tasks.

2.2. Rule-Based Systems

RB code generation relies on predefined rules and

patterns to generate code from high-level
specifications or natural language descriptions. These
systems use expert knowledge encoded in rules to
map input specifications to code structures. RB
systems have been widely used in industrial
automation and specific application domains where
the generation process can be well-defined and RB
[13], [23]. They offer interpretability and control
over the generated code but may require extensive
rule engineering and may not handle complex or
ambiguous specifications effectively. RB systems use
a set of rules to generate code. The rules are typically
expressed in a declarative language, such as Prolog
[24].

2.3. Machine Learning (ML)

ML techniques have been extensively explored

for code generation tasks. ML-based code generation
approaches often involve training models on large
code repositories to learn patterns, relationships, and
common coding practices. These models can
generate code based on the learned knowledge. ML
techniques such as statistical language models,
recurrent neural networks (RNNs), and transformers
have been employed for tasks like auto-completion,
code summarization, and code generation [25], [2],
[11]. ML-based approaches can capture complex
patterns in the data but may struggle with rare or
unseen coding scenarios and require substantial
amounts of training data.

For example, A ML-powered service from
Amazon, CodeWhisperer [26], provides code
recommendations for developers based on their
natural comments.

2.4. Natural Language Processing (NLP)

NLP can be used to generate code from NL

descriptions [27], [28]. NLP techniques such as
parsing, neural language models, sequence-to-
sequence models [11], semantic analysis, and
machine translation can be used for this purpose. One
more study [29] focuses on integrating external
knowledge sources to enhance NLP-based code
generation. The research [27] uses DL techniques for
code generation from NL description. It investigates
neural network architectures, such as sequence-to-
sequence models, to capture the intricate
relationships between NL and code. It emphasizes
the ability of DL models to handle long-range
dependencies in NL descriptions, leading to
improved code generation performance [27].

2.5. Deep Learning (DL)

DL models, such as CodeGRU and deep transfer

learning, have been developed to model and generate
source code [30], [31]. Recurrent neural networks
(RNNs)[32] can capture sequential dependencies in
code and generate code snippets or complete
functions. Transformers (e.g., GPT [33], [34], BERT
[35]), have been widely used for code generation
[27], [30], [31], allowing the model to attend to
relevant code contexts and generate code with
improved context awareness [7]. Graph neural
networks (GNNs) [36] can handle code represented
as graphs and capture relationships between code
entities [15]. DL techniques excel in capturing
complex patterns and generating code with improved
accuracy [7]. However, they require large amounts of
labeled training data, substantial computational
resources, and may suffer from a lack of
interpretability.

2.6. Evolutionary Algorithms (EAs)

EAs are a type of ML algorithm that can be used

to generate code by iteratively mutating and evolving
existing code. EAs work by starting with a
population of randomly generated code, and then
iteratively selecting the best performing individuals
from the population and mutating them to create new
individuals. This process is repeated until a
satisfactory solution is found. EAs benefits: they can
be used to: generate code that is efficient and
effective [37], easy to maintain [38], for different
programming languages, platforms, and applications
[37].

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 729

The research provided in [39], proposes a new
approach to software development that uses artificial
agents to automate the code generation process.
Another study [21] explores the integration of AI into
the Software Development Life Cycle (SDLC). The
authors posit that AI can automate numerous tasks
within the SDLC, including requirements gathering,
analysis, and validation. Such integration has the
potential to yield substantial productivity
enhancements and elevate software quality.

3. The Advancements in AIT for ACG

The advancement of AIT has led to a significant
rise in the popularity of ACG in recent years [21].
Various AITs have been employed for code
generation, including RB systems, ML, DL, NLP,
and EAs.

3.1. The Recent Advancements

This section provides the recent and the most

important advancements in AI for ACG in various
domains, as well as the following AI applications
used for ACG as shown in Table 2.

Table 2. AI Applications

No AI Application Description
1 CodeGRU A context-aware Deep Learning (DL) model with gated recurrent unit (GRU)

architecture for source code modeling [30].
2 Amazon

CodeWhisperer
An Machine Learning (ML)-powered coding companion developed by Amazon that
assists developers in writing code more efficiently and effectively [26].

3 BERTGen A multi-task generation model based on BERT (Bidirectional Encoder Representations
from Transformers) for code generation tasks [35].

4 GPT-3 A state-of-the-art language model developed by OpenAI [41] that can be used for
various Natural Language Processing (NLP) tasks [42], including code generation.

5 DeepCoder A neural network with leaky ReLU achieves the best performance when compared to
other approaches[45].

6 DL Code
Completion

A DL-based code completion approach that uses language models to predict the next
code token given a partial code sequence [43].

7 DL Code
Editors (e.g.,
GitHub's
Copilot) [41]

Code editors powered by DL models that provide intelligent code completion and
generation suggestions to developers, and can even write entire programs [43], [44]

8 CodeGAN A model utilizing neural networks and NLP techniques to generate code from high-level
descriptions or code snippets [6].

9 AlphaCode A DL model achieving human-level performance on the Codeforces platform[46].
10 Tree-Structured

Architectures
Approaches using tree-based representations of code syntax to guide code generation and
enhance the structural coherence of generated code [19].

11 RB Code
Generation

Techniques using Rule-Based (RB) systems to generate code based on predefined rules
and patterns[23], [47].

12 EAs for Code
Generation

Genetic programming and Evolutionary Algorithms (EAs) applied to code generation
tasks, optimizing code generation through evolutionary processes [38], [48], [49].

13 TB Code
Generation

Approaches using templates and patterns to generate code based on predefined structures
and rules [50], [51], [52].

14 Frameworks
(e.g.,
Tensorflow,
PyTorch)

Powerful tools and APIs for building and deploying code generation models, enabling
researchers and developers to use cutting-edge DL techniques [2], [25]

15 Google Cloud
AutoML Code
[50].

A service that uses ML to generate code for various programming languages and
platforms [53].

3.2. The Benefits and Improvements Achieved Through

AI-based Code Generation

1. Increased productivity and efficiency: AI-
based code generation automates repetitive and time-
consuming tasks in software development, allowing
developers to focus on higher-level tasks. It
accelerates the coding process by generating code

snippets, templates, or even complete programs,
reducing the overall development time and effort
[18], [25].

2. Enhanced code quality: AI models can
analyze large codebases, identify patterns, and learn
best coding practices from existing high-quality
code.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

730 TEM Journal – Volume 13 / Number 1 / 2024.

This enables them to generate code that adheres to
industry standards, follows coding conventions, and
incorporates good software engineering principles.
The generated code is less prone to errors and
exhibits improved readability, maintainability, and
modularity [25], [2].

3. Enabling code generation from alternative
representations: AI models can generate code from
different representations, such as images, diagrams,
or sketches. This allows developers to express their
ideas visually or graphically and automatically
convert them into executable code. It promotes low-
code or no-code development and empowers
individuals with limited coding skills to create
functional applications[54], [55].

4. Code completion and autocompletion: AI
models trained on vast code repositories can provide
intelligent code completion suggestions based on the
context. They can predict the next lines of code,
recommend suitable function calls, suggest variable
names, and provide helpful documentation.

This feature speeds up the coding process and
reduces the likelihood of syntactic or logical errors
[25], [43].

5. Support for code refactoring: AI models can
assist in refactoring code by automatically suggesting
improvements or generating refactored code snippets.
This helps developers improve the structure,
organization, and performance of existing codebases
[2].

6. Transfer learning and knowledge sharing: AI
models trained on large codebases can capture the
knowledge and expertise embedded within the code
[31].

7. Continuous learning and improvement: AI
models can be continuously trained on new code
repositories, incorporating the latest coding practices
and trends [6], [56].

8. Bridging the gap between NL and code: AI
models can understand NL of software requirements
or functionalities and generate corresponding code
[27], [10].

Table 3provides some benefits, impact, and
lessons learned from the applications of AIT ACG.

Table 3. Impact, benefits, and lessons learned from ATIs applications for ACG

Application Benefits Impact Lessons Learned
Amazon
CodeWhisperer
[26]

- Context-aware
code completion
and bug detection

- Improved coding
efficiency

- AI-powered coding companions can
enhance developer productivity

Automatic HTML
Code Generation
[57]][9]

- Faster front-end
development

- Reduced manual coding
efforts

- AIT can automate repetitive and time-
consuming tasks in web development

Mobile Application
Development [55]

- Simplified mobile
app development

- Reduced programming
efforts

- AI-based code generation from
sketches can facilitate rapid
prototyping and development of mobile
applications

Function Block
Applications [37]

- Automatic
generation of
function block
applications

- Faster and more efficient
development in automation

- Evolutionary algorithms can optimize
industrial automation systems

Source Code
Modeling and
Generation [43]

- ACG based on
learned patterns

- Improved code quality
and consistency

- DL models can capture complex
patterns and structures in source code

Natural Language
to Code Generation
[58]

- Translation of
natural language
descriptions into
code.

- Enables non-
programmers to express
intentions in code

- NLP techniques can bridge the gap
between human language and
programming languages.

4. The Challenges, Limitations, and Ethical

Considerations

The utilization of ACG with AITs has garnered
substantial interest recently owing to its capacity to
enhance productivity and efficiency in software
development. Nevertheless, there are various
challenges and constraints that necessitate careful
consideration. This section delves into some of these
challenges and limitations.

1. Lack of Sufficient Training Data: One major
challenge in AI-based code generation is the
availability of high-quality training data. Training
ML models require large and diverse datasets that
accurately represent the target problem domain.
However, obtaining such datasets for code generation
tasks can be difficult due to the proprietary nature of
codebases or limited access to labeled code examples
[25], [2].

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 731

2. Lack of Contextual Understanding: AI
models may struggle with understanding the context
and requirements of code generation tasks, especially
when dealing with complex or domain-specific
scenarios [1], [54]. It can be challenging to capture
the nuances of programming languages, frameworks,
and libraries, leading to suboptimal code generation.

3. Limited Training Data: Training data
availability can be a significant challenge in code
generation tasks. Generating high-quality and diverse
training datasets that cover various programming
languages, frameworks, and coding styles is often
difficult [2], [43]. Limited training data can impact
the performance and generalization ability of AI
models.

4. Difficulty in Handling Ambiguities: Code
generation tasks often involve dealing with
ambiguous or incomplete specifications, making it
challenging for AI models to generate accurate and
desired code [59], [34]. Ambiguities in natural
language descriptions or incomplete requirements
can result in code that does not meet the intended
functionality.

5. Scalability and Performance: Scaling AI
models for large-scale code generation can be
computationally expensive and time-consuming[33],
[10]. Generating complex codebases or working with
massive code repositories can pose challenges in
terms of memory, computation, and efficiency.

6. Overfitting and Generalization: AI models
trained for code generation tasks are prone to
overfitting, where they memorize specific patterns
from the training data but struggle to generalize to
unseen code examples. This limitation can lead to the
production of code that lacks robustness and fails to
handle edge cases or adapt to different scenarios.
Achieving a balance between capturing common
patterns and promoting generalization is a significant
challenge in AI-based code generation [25], [7], [30]
[55], [27].

7. Maintenance and Adaptation: Code
generation models need to adapt to changing
programming languages, libraries, and frameworks
[38], [13]. Maintaining and updating these models to
accommodate new language features and coding
practices can be a time-consuming and resource-
intensive process.

8. Balancing Flexibility and Guided Generation:
Striking a balance between generating code that
meets specific requirements while allowing
flexibility for developers to customize and modify
the generated code can be challenging [19], [50]. AI
models need to provide options for customization
without overwhelming the developer with an
excessive number of choices.

9. Trust and Safety: As AI models are used for
automated code generation, ensuring the
trustworthiness and safety of the generated code
becomes crucial [22], [51]. Issues such as bias,
security vulnerabilities, and unintended
consequences in the generated code need to be
addressed.

10. Adoption and Acceptance: Widespread
adoption and acceptance of AIT for ACG may face
resistance and skepticism from developers and
industry stakeholders [60], [4]. Building trust,
demonstrating the value, and addressing concerns
around job displacement and loss of control are
important factors in the successful adoption of AIT in
code generation.

11. Code Complexity and Variability: Codebases
can be highly complex and vary significantly across
different projects and programming languages. AIT
for code generation often struggle with capturing and
understanding the nuances and intricacies of code
syntax, semantics, and idiomatic patterns. This
makes it challenging to generate accurate and high-
quality code that aligns with the desired functionality
and style [25], [2], [7].

12. Difficulty in Capturing Context and Intent:
Understanding the context and intent of the code
generation task is crucial for producing correct and
meaningful code. However, AI models may struggle
to capture the complete context and accurately
interpret the developer's intent from limited
information, such as code snippets or natural
language descriptions. Ambiguities in specifications
or lack of explicit requirements further complicate
the code generation process [43], [27], [28].

13. Limited Support for Domain-Specific
Languages and Libraries: AIT for code generation
often focus on popular programming languages and
libraries, such as Python or TensorFlow. However,
many software development projects utilize domain-
specific languages or libraries that are less widely
studied or have limited available training data.
Adapting AI models to support such specialized
domains can be challenging due to the lack of
resources and specialized knowledge required [25],
[2].

14. Debugging and Maintenance Challenges:
Generated code produced by AI models may contain
bugs, logical errors, or suboptimal performance,
which can be challenging to identify and fix.
Debugging and maintaining code generated by AI
systems can be more complex than traditional
human-written code. This challenge raises concerns
about the reliability and maintainability of code
generated through AIT [18], [26], [54].

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

732 TEM Journal – Volume 13 / Number 1 / 2024.

4.1. Ethical Considerations

The use of AIT in ACG raises ethical and legal
concerns, particularly when it comes to generating
code that is used in safety-critical systems or handles
sensitive data. Ensuring the generated code adheres
to security, privacy, and ethical guidelines poses
significant challenges and requires careful validation
and verification processes [18], [26]. AI-generated
code presents various ethical considerations, biases,
and potential risks that need to be addressed to
ensure responsible and safe use. Here are some key
points to consider:

1. Bias and Fairness: AI models trained on
biased or incomplete data can lead to biased code
generation. If the training data primarily represents a
specific demographic or excludes certain groups, the
generated code may reflect those biases, perpetuating
inequality and discrimination. It is essential to
address bias during the training process and
incorporate diverse and representative datasets [25],
[11].

2. Reliability and Accountability: AI-generated
code may contain errors or produce unintended
consequences. It is crucial to verify and test the
generated code thoroughly to ensure its correctness,
robustness, and safety. Developers and users should
be aware of the limitations of AI-generated code and
take responsibility for its outcomes [18].

3. Privacy and Security: AI models used for
code generation may process sensitive or proprietary
information. Safeguarding data privacy and ensuring
secure code generation are paramount. Developers
must implement strict security measures to protect
confidential information and prevent malicious use of
AI-generated code [26].

4. Transparency and Explainability: AI models
used for code generation often operate as black
boxes, making it challenging to understand the
underlying decision-making process [61]. Enhancing
transparency and explainability in AI systems is
crucial to build trust and enable effective debugging,
auditing, and compliance with legal and ethical
standards [2], [43].

5. Intellectual Property and Copyright: AI-
generated code may raise concerns regarding
intellectual property and copyright. Developers need
to ensure that generated code adheres to legal and
licensing requirements and does not violate
intellectual property rights [54].

6. Unemployment and Job Displacement: The
automation of software development through AI-
generated code has the potential to impact
employment in the software engineering field. While
AI can augment developers' capabilities, there is a
risk of job displacement. Efforts should be made to
reskill and upskill individuals to adapt to the
changing landscape and mitigate the negative impact
on employment [1].

7. Human Oversight and Control: AI-generated
code should not replace human decision-making
entirely. It is crucial to maintain human oversight and
control over the generated code to ensure its
alignment with ethical and legal standards. Human
intervention is necessary to review, validate, and
modify the generated code as needed [43], [7].

Table 4 provides a summary of main ethical
considerations, biases, and potential risks [62] related
to using AIT for ACG. They should be managed
carefully to ensure the responsible and ethical use of
ACG in software development.

Table 4. Ethical considerations, biases, and potential risks

Ethical Considerations Biases Potential Risks
Bias and Fairness Bias in training data Errors and unintended consequences
Reliability and Accountability Incomplete or biased datasets Lack of code correctness and robustness
Privacy and Security Exposing sensitive information Misuse of confidential data
Transparency and
Explainability

Lack of transparency and
explainability

Difficulty in understanding decision-making
process

Intellectual Property and
Copyright

Violation of IP and copyright Legal consequences and infringements

Unemployment and Job
Displacement

Impact on employment in the
software engineering field

Job displacement and unemployment

Human Oversight and Control Lack of human intervention and
review

Violation of ethical and legal standards

5. Comparative Analysis of AI T for ACG

In this key section, we will compare and contrast

different AI techniques used for generating code
automatically. We will look at how they work, how
they are measured, and their strengths and
weaknesses.

5.1. Methodology

In the Methodology section our approach involves
a process that aims to understand how AITs are used
for ACG. Initially we carefully gathered data, from
the research articles mentioned in the reference
section ensuring a foundation for our analysis.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 733

Then we explored a range of AI methods applied
in ACG examining how they are implemented in
contexts. To provide insights we identified the AI
algorithms used in each method and mapped out the
intricate technological landscape. Moreover we
meticulously identified the criteria used to evaluate
each method emphasizing their effectiveness and real
world applicability.

During our analysis we critically evaluated both
strengths and weaknesses of each method to offer a
perspective on their performance. This
comprehensive approach allowed us to gain nuanced
insights into the evolving field of AIT for ACG and
laid the groundwork, for discussions and valuable
conclusions. Figure 1 depicts the proposed structure.

Figure. 1. The general methodology steps

5.2. Evaluation Criteria

To evaluate the strengths, weaknesses, and
performance of different AITs for ACG, several

criteria can be considered. In the Table 5, we provide
the most common and important criteria.

Table 5. The evaluation criteria of AI methods used for ACG

No Criteria Description
1 Accuracy Measure of how well the technique performs in generating correct and functional code [18], [25], [2],

[43], [63], [39], [21].
2 Efficiency The efficiency of the generated code is evaluated based on performance metrics such as execution

time, memory usage, and computational complexity [40], [63].
3 Scalability Evaluation of how well the technique can handle large-scale codebases and datasets [25], [2], [11].
4 Generalization Ability of the technique to generalize and perform well on unseen or diverse code examples [25], [11],

[1].
5 Interpretability Degree to which the technique provides understandable and interpretable results [1], [54], [7].
6 Robustness Resilience of the technique to handle noisy or incomplete input code [2], [7], [10]. Robustness

evaluation helps ensure the reliability and adaptability of the ACG system.
7 Adaptability Capability of the technique to adapt to changing code requirements or contexts [20], [21], [40].
8 Training Data

Requirements
Assessment of the amount and quality of labeled training data needed for the technique [2], [54].

9 Handling Rare
Patterns

Evaluation of the technique's ability to handle rare or uncommon code patterns [9].

10 Language
Support

Assessment of the technique's applicability and effectiveness across different programming languages
[11], [59], [27].

11 Correctness The generated code should be correct and function as intended. It should accurately implement the
desired functionality without introducing errors or bugs. Evaluating correctness involves comparing
the generated code against the desired specifications and assessing its ability to produce the expected
output [40].

12 Completeness The generated code should cover all the necessary functionality and requirements specified by the
given input. Evaluating completeness involves analyzing whether the generated code addresses all the
required features and functionality, leaving no critical gaps or missing components. [40], [21].

13 Maintainability Evaluating maintainability focuses on the ease of understanding, modifying, and extending the
generated code. Factors such as code readability, modularity, and adherence to coding standards are
considered. Assessing maintainability involves reviewing the code structure, documentation, and the
availability of appropriate abstractions and encapsulation. [40], [63], [39], [21].

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

734 TEM Journal – Volume 13 / Number 1 / 2024.

Figure 2 shows the frequency of most important
evaluation criteria used in the selected research. For
example, correctness, accuracy, maintainability,

robustness, and consistency are highly used, while
portability used with low frequency, and the others
are medium frequently used.

Figure. 2. Frequency of used criteria

5.3. Strengths, Weaknesses, and Performance

Depending on the evaluation criteria extracted
from related researches, we were able to extract

points of strength, weakness, and performance as
shown in the Table 6.

Table 6. Comparative analysis of AIT for ACG

AIT Strengths Weaknesses Performance
TB • Simplicity and ease of use.

• Well-suited for repetitive
patterns

• Limited flexibility and
adaptability.

• Limited handling of complex
logic.

• Fast code generation for specific tasks.
• Limited scalability for diverse

applications.

RB • Explicit representation of
domain knowledge.

• Clear traceability of code
generation decisions.

• Requires extensive rule definition.
• Complexity increases with rule set

size.

• Efficient for applications with clear rule
structures.

• Suitable for well-defined, rule-bound
domains.

DL • Ability to learn complex
patterns from data.

• Adaptability to diverse and
evolving requirements.

• Dependence on quality and
quantity of training data.

• Lack of interpretability in
decision-making.

• Good performance for tasks with
sufficient training data.

• Requires continuous training for
changing contexts.

DL • Capability to capture intricate
syntax and semantics.

• End-to-end learning for
feature extraction.

• Demands large amounts of high-
quality training data.

• Computational complexity in
training deep models.

• High accuracy in generating
contextually rich code.

• Superior performance for tasks with
complex patterns.

EAs • Exploration of diverse
solution spaces.

• Adaptive to changing problem
landscapes.

• High computational overhead for
complex problems.

• Convergence to optimal solutions
not always guaranteed.

• Effective for optimization-based code
generation tasks.

• Suitable for heuristic-driven, complex
optimization tasks.

NLP • Can be used to generate code
from natural language
descriptions.

• This can be a more natural way to
generate code for non-technical
users.

• Can be effective for generating code for
simple tasks, but it is not as effective for
generating code for complex tasks.

Please note that the performance of these

approaches can vary based on the specific context
and problem domain. Additionally, advancements in
technology and methodologies could impact the
strengths, weaknesses, and performance of these
approaches in the future.

6. Future Directions and Research
Opportunities

In this section, we hope to highlight potential
pathways and unexplored avenues that merit further
investigation and innovation.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 735

By identifying these opportunities, we hope to
chart a course for future research that will address
existing challenges, leverage new technologies, and
ultimately push the boundaries of what is possible in
automated code generation. This forward-thinking
exploration aims to shape the future rather than
simply predict it.

6.1. Directions and Areas for Improvement in AIT for
ACG

Based on the reviewed references, we found
important potential research directions and areas for
improvement in AIT for ACG such as: Integration of
NLP and Code Generation, ML for Big Code and
Naturalness, and others. The most important
directions are provided in Table 7.

Table 7. Directions and areas for improvement in AIT for ACG

No Directions Improvement in AIT for ACG
1 Integration of NLP and

Code Generation
Investigate methods to improve the understanding and translation of natural language
descriptions into executable code [27], [29]. This could involve exploring techniques such as
pre-training models with external knowledge [29], incorporating lexical and grammatical
processing, and leveraging DL models for better source code modeling [7], [30], [31].

2 ML for Big Code and
Naturalness

Explore ML approaches that leverage big code repositories to improve ACG [25]. This could
involve using techniques like neural networks, DL, or transfer learning to capture patterns and
generate code that aligns with the naturalness of human-written code

3 Code Generation from
GUI Images

Investigate AIT to automatically generate code from graphical user interface (GUI) mock-up
images [9], [54]. This area could involve developing computer vision models combined with
DL techniques to recognize UI elements and generate corresponding code.

4 Code Generation using
EAs

Explore the application of evolutionary algorithms in automating code generation [37], [48],
[49]. This research direction could involve investigating how evolutionary algorithms can be
used to generate optimized code and solve complex programming problems.

5 Improving AI Model
Training and Evaluation

Improving AI models training and evaluation can help in addressing some challenges such as
selection of dataset, generalization, and interpretability [2], [6].

6 TB Code Generation This research direction could involve developing advanced template systems that can generate
code based on predefined templates and adapt to different contexts or requirements.

7 ACG for Specific
Domains

Exploring AITs for ACG in specific domains (industrial, self-adaptive, mobile) can improve
these domains and algorithms used for generating code [22], [55].

8 Code Generation Tools
and IDE Integration

This direction enhances developer productivity and support real-time code suggestions or
completions [26], [43].

9 Software Maintenance
and Refactoring Support

Investigate AIT for ACG that can assist in software maintenance tasks, such as refactoring or
bug fixing [18].

10 DL -based Code
Generation

DL-based architectures can capture complex patterns and dependencies in code and generate
high-quality code snippets.

11 Performance
Optimization

Performance optimization can enhance efficiency of the generated code, and performance
metrics such as execution time, memory usage, or energy consumption.

12 Human-in-the-Loop
Approaches

Explore approaches that incorporate human feedback and interactions into the code generation
process. This can involve techniques such as interactive code completion, code refactoring
suggestions, or collaborative code generation environments that combine human expertise
with AI capabilities

13 Hybrid Approaches Integrate AIT with traditional RB or TB methods to harness the advantages of both
approaches.

14 Domain-Specific
Languages (DSLs):

Design and implement DSLs that are optimized for code generation tasks in specific
application domains. DSLs can provide high-level abstractions and specific syntax tailored to
the domain, enabling more efficient and accurate code generation [25], [2]

15 Transfer Learning and
Pre-training

Transfer learning can be used to improve code generation by pre-training models on large
code repositories or related tasks.

16 Multi-modal Code
Generation

Explore techniques that combine multiple modalities, such as code snippets, natural language
descriptions, and diagrams, to generate code. This approach can improve the accuracy of
generated code

17 Incremental Code
Generation (ICG)

Create ICG algorithms, allowing developers to enhance generated code.

The ongoing research, in AITs aimed at ACG has

the potential to greatly transform the field of software
development. Although there are some obstacles to
overcome the continuous efforts being made in this

area are yielding progress. By prioritizing the
suggested research directions and implementing
improvements we can further enhance AIT for ACG
making it more robust, effective, and user friendly.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

736 TEM Journal – Volume 13 / Number 1 / 2024.

7. Conclusion

Finally, in this work, various AITs for ACG in
software development have been discussed and
compared; it highlighted the limitations of traditional
and AI approaches, and explored the introduction of
AI techniques in code generation. Through our
analysis, we have identified the strengths and
weaknesses of different AITs, including RB systems,
ML, and DL.

These techniques have shown significant
advancements in generating code, improving
efficiency, and enhancing code quality. We have also
discussed their relevance and applicability to
different code generation tasks. Furthermore, we
have presented recent developments and innovations
in AI techniques for code generation, showcasing
case studies and real-world applications that
demonstrate their effectiveness. The evaluation
metrics commonly used to assess the performance of
AI-based code generation systems were discussed as
well. While AI techniques offer great potential in
automated code generation, they come with their own
challenges and limitations. Data requirements and
availability for training AI models, scalability,
efficiency, and the interpretability of AI-generated
code are among the key challenges that need to be
addressed.

These considerations will shape the adoption and
integration of AI techniques in real-world software
development. Based on our comparative analysis, we
have provided insights into the strengths and
weaknesses of each AI technique, enabling
researchers and practitioners to make informed
decisions in selecting and combining methodologies
based on specific requirements and constraints. The
implications of AI-based code generation in software
development are significant. By automating
repetitive and time-consuming code generation tasks,
developers can focus more on higher-level design
and critical problem-solving. This can lead to
increased productivity, accelerated software
development cycles, and improved software quality.

References:

[1]. Meziane, F., & Vadera, S. (2010). Artificial

intelligence in software engineering: current
developments and future prospects. Artificial
intelligence applications for improved software
engineering development: New prospects, 278-299.

[2]. Dehaerne, E., Dey, B., Halder, S., De Gendt, S., &
Meert, W. (2022). Code generation using machine
learning: A systematic review. Ieee Access, 10,
82434–82455. Doi: 10.1109/ACCESS.2022.3196347.

[3]. Shahzad, B., Abdullatif, A. M., Ikram, N., &
Mashkoor, A. (2017). Build software or buy: A study
on developing large scale software. IEEE Access, 5,
24262-24274. doi: 10.1109/ACCESS.2017.2762729.

[4]. P. M. Khan and M. M. Sufyan Beg. (2012).
Measuring Cost of Quality(CoQ)- on SDLC projects
is indispensible for effective Software Quality
Assurance. International Journal of Soft Computing
and Software Engineering, 2(9), 1–15.
Doi: 10.7321/JSCSE.V2.N9.1.

[5]. Chemnitz, L., Reichenbach, D., Aldebes, H., Naveed,
M., Narasimhan, K., & Mezini, M. (2023). Towards
Code Generation from BDD Test Case Specifications:
A Vision. Proc. - 2023 IEEE/ACM 2nd Int. Conf. AI
Eng. - Softw. Eng. 139–144.
Doi: 10.1109/CAIN58948.2023.00031.

[6]. Yang, Z., Chen, S., Gao, C., Li, Z., Li, G., & Lv, R.
(2023). Deep Learning Based Code Generation
Methods: A Literature Review. arXiv preprint
arXiv:2303.01056.

[7]. Le, T. H., Chen, H., & Babar, M. A. (2020). Deep
learning for source code modeling and generation:
Models, applications, and challenges. ACM
Computing Surveys (CSUR), 53(3), 1-38.
Doi: 10.1145/3383458.

[8]. Zhang, X., Jiang, Y., & Wang, Z. (2019). Analysis of
automatic code generation tools based on machine
learning. In 2019 IEEE International Conference on
Computer Science and Educational Informatization
(CSEI), 263-270. IEEE.
Doi: 10.1109/CSEI47661.2019.8938902.

[9]. Aşıroğlu, B., Mete, B. R., Yıldız, E., Nalçakan, Y.,
Sezen, A., Dağtekin, M., & Ensari, T. (2019).
Automatic HTML code generation from mock-up
images using machine learning techniques. In 2019
Scientific Meeting on Electrical-Electronics &
Biomedical Engineering and Computer Science
(EBBT), 1-4. IEEE.
Doi: 10.1109/EBBT.2019.8741736.

[10]. Yang, C., Liu, Y., & Yin, C. (2021). Recent
Advances in Intelligent Source Code Generation: A
Survey on Natural Language Based
Studies. Entropy, 23(9), 1174.
Doi: 10.3390/E23091174.

[11]. Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R.,
Vats, I., Moazen, H., & Sarro, F. (2021). A survey on
machine learning techniques for source code
analysis. arXiv preprint arXiv:2110.09610.

[12]. Zhang, C., Niu, X., & Yu, B. (2018). A method of
automatic code generation based on AADL model.
In Proceedings of the 2018 2nd International
Conference on Computer Science and Artificial
Intelligence, 180-184.
Doi: 10.1145/3297156.3297172.

[13]. Koziolek, H., Burger, A., Platenius-Mohr, M.,
Rückert, J., Abukwaik, H., Jetley, R., & P, A. P.
(2020). Rule-based code generation in industrial
automation: four large-scale case studies applying the
cayenne method. In Proceedings of the ACM/IEEE
42nd International Conference on Software
Engineering: Software Engineering in Practice, 152-
161. Doi: 10.1145/3377813.3381354.

[14]. Soliman, A. S., Hadhoud, M. M., & Shaheen, S. I.
(2022). MarianCG: A code generation transformer
model inspired by machine translation. Journal of
Engineering and Applied Science, 69(1), 1-23.

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 737

[15]. Bilgin, Z. (2021). Code2image: Intelligent code
analysis by computer vision techniques and
application to vulnerability prediction. arXiv preprint
arXiv:2105.03131.

[16]. Arogundade, O. T., Onilede, O., Misra, S., Abayomi-
Alli, O., Odusami, M., & Oluranti, J. (2021). From
modeling to code generation: an enhanced and
integrated approach. In Innovations in Information
and Communication Technologies (IICT-2020)
Proceedings of International Conference on ICRIHE-
2020, Delhi, India: IICT-2020, 421-427. Springer
International Publishing.

[17]. Chen, H. (2020). Design and implementation of
automatic code generation method based on model
driven. In Journal of Physics: Conference Series,
1634(1), 012019. IOP Publishing.
Doi: 10.1088/1742-6596/1634/1/012019.

[18]. Nagulapati, V., Rapelli, S. R., & Fiaidhi, J. (2020).
Automating Software Development using Artificial
Intelligence. TechRxiv.
Doi: 10.36227/TECHRXIV.12089139.V1.

[19]. Dahal, S., Maharana, A., & Bansal, M. (2021).
Analysis of tree-structured architectures for code
generation. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 4382-
4391. Doi: 10.18653/V1/2021.FINDINGS-ACL.384.

[20]. Yu, P., Shu, H., Xiong, X., & Kang, F. (2021,
December). A random code generation method based
on syntax tree layering model. In International
Conference on Electronic Information Engineering
and Computer Technology (EIECT 2021),12087,
465-476. SPIE. Doi: 10.1117/12.2624688.

[21]. Kumari, V. I. P. A. N., & Kulkarni, S. A. N. D. E. E.
P. (2018). Use of artificial intelligence in software
development life cycle requirements and its
model. Int. Res. J. Eng. Technol.(IRJET), 5(8), 398-
403.

[22]. Lee, J., Park, J., Yoo, G., & Lee, E. (2010). Goal-
based automated code generation in self-adaptive
system. Journal of Computer Science and
Technology, 25(6), 1118-1129.
Doi: 10.1007/S11390-010-9393-2/METRICS.

[23]. Imam, A. T., Rousan, T., & Aljawarneh, S. (2014).
An expert code generator using rule-based and frames
knowledge representation techniques. In 2014 5th
International Conference on Information and
Communication Systems (ICICS), 1-6. IEEE.
Doi: 10.1109/IACS.2014.6841951.

[24]. Pont, M. J. (2014). Prolog as a Language for Rule-
Based Code Generation. Theory Pract. Log. Program,
5.

[25]. Allamanis, M., Barr, E. T., Devanbu, P., & Sutton,
C. (2018). A survey of machine learning for big code
and naturalness. ACM Computing Surveys
(CSUR), 51(4), 1-37. Doi: 10.1145/3212695.

[26]. Desai, A., & Deo, A. (2022). Introducing Amazon
CodeWhisperer, the ML-powered coding companion .
AWS Machine Learning Blog. Retrieved
from: https://aws.amazon.com/blogs/machine-
learning/introducing-amazon-codewhisperer-the-ml-
powered-coding-companion/
[accessed: 14 September 2023.].

[27]. Zhu, J., & Shen, M. (2020). Research on Deep
learning Based Code generation from natural
language Description. In 2020 IEEE 5th International
Conference on Cloud Computing and Big Data
Analytics (ICCCBDA), 188-193. IEEE.
Doi: 10.1109/ICCCBDA49378.2020.9095560.

[28]. Beau, N., & Crabbé, B. (2022). The impact of lexical
and grammatical processing on generating code from
natural language. In Findings of the Association for
Computational Linguistics: ACL 2022, 2204–2214,
Dublin, Ireland. Association for Computational
Linguistics.

[29]. Xu, F. F., Jiang, Z., Yin, P., Vasilescu, B., & Neubig,
G. (2020). Incorporating External Knowledge through
Pre-training for Natural Language to Code
Generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, 6045–6052, Association for
Computational Linguistics.
Doi: 10.18653/V1/2020.ACL-MAIN.538.

[30]. Hussain, Y., Huang, Z., Zhou, Y., & Wang, S.
(2020). CodeGRU: Context-aware deep learning with
gated recurrent unit for source code
modeling. Information and Software Technology, 125,
106309. Doi: 10.1016/J.INFSOF.2020.106309.

[31]. Hussain, Y., Huang, Z., Zhou, Y., & Wang, S.
(2020). Deep transfer learning for source code
modeling. International Journal of Software
Engineering and Knowledge Engineering, 30(05),
649-668. Doi: 10.1142/S0218194020500230.

[32]. Priya, R., Wang, X., Hu, Y., & Sun, Y. (2017). A
deep dive into automatic code generation using
character based recurrent neural networks. In 2017
International Conference on Computational Science
and Computational Intelligence (CSCI), 369-374.
IEEE. Doi: 10.1109/CSCI.2017.61.

[33]. Saravanan, S., & Sudha, K. (2022). GPT-3 powered
system for content generation and transformation.
In 2022 Fifth International Conference on
Computational Intelligence and Communication
Technologies (CCICT), 514-519. IEEE.
Doi: 10.1109/CCICT56684.2022.00096.

[34]. Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H.,
Zhang, X., & Yan, M. (2023). Improving ChatGPT
Prompt for Code Generation. arXiv preprint
arXiv:2305.08360.

[35]. Mitzalis, F., Caglayan, O., Madhyastha, P., &
Specia, L. (2021). BERTGen: Multi-task Generation
through BERT, In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing,1,Long
Papers, 6440–6455.

[36]. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu,
Z., ... & Sun, M. (2020). Graph neural networks: A
review of methods and applications. AI open, 1, 57-
81. Doi: 10.1016/J.AIOPEN.2021.01.001.

[37]. Mironovich, V., Buzdalov, M., & Vyatkin, V.
(2017). Automatic generation of function block
applications using evolutionary algorithms: Initial
explorations. In 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), 700-
705. IEEE. Doi: 10.1109/INDIN.2017.8104858.

https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

738 TEM Journal – Volume 13 / Number 1 / 2024.

[38]. Cortes, O. A., Eveline de Jesus, V. S., da Silva, J. A.,
& Rau-Chaplin, A. (2015). An Automatic Code
Generator for Parallel Evolutionary Algorithms:
Achieving Speedup and Reducing the Programming
Efforts. ADVCOMP 2015, 48.

[39]. Insaurralde, C. C. (2013). Software programmed by
artificial agents toward an autonomous development
process for code generation. In 2013 IEEE
International Conference on Systems, Man, and
Cybernetics, 3294-3299. IEEE.
Doi: 10.1109/SMC.2013.561.

[40]. Simonsen, K. I. F. (2014). An evaluation of
automated code generation with the PetriCode
approach. In CEUR Workshop Proceedings, 289–
306.

[41]. Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-
Reilly, A., & Prather, J. (2022). The robots are
coming: Exploring the implications of openai codex
on introductory programming. In Proceedings of the
24th Australasian Computing Education Conference,
10-19. Doi: 10.1145/3511861.3511863.

[42]. Rishi. (2023). ChatGPT – An Insight To Fun Facts
For All Data Scientists. Education. Retrieved
from: https://vocal.media/education/chat-gpt-an-
insight-to-fun-facts-for-all-data-scientists
[accessed: 13 September 2023].

[43]. Cruz-Benito, J., Vishwakarma, S., Martin-
Fernandez, F., & Faro, I. (2021). Automated source
code generation and auto-completion using deep
learning: Comparing and discussing current language
model-related approaches. AI, 2(1), 1-16.
Doi: 10.3390/AI2010001.

[44]. Yetistiren, B., Ozsoy, I., & Tuzun, E. (2022).
Assessing the quality of GitHub copilot’s code
generation. In Proceedings of the 18th International
Conference on Predictive Models and Data Analytics
in Software Engineering, 62-71.
Doi: 10.1145/3558489.3559072.

[45]. Shim, S., Patil, P., Yadav, R. R., Shinde, A., &
Devale, V. (2020). DeeperCoder: Code Generation
Using Machine Learning. In 2020 10th Annual
Computing and Communication Workshop and
Conference (CCWC), 0194-0199. IEEE.
Doi: 10.1109/CCWC47524.2020.9031149.

[46]. Li, Y., Choi, D., Chung, J., Kushman, N.,
Schrittwieser, J., Leblond, R., ... & Vinyals, O.
(2022). Competition-level code generation with
alphacode. Science, 378(6624), 1092-1097.
Doi: 10.1126/SCIENCE.ABQ1158.

[47]. I. S. Bajwa, M. I. Siddique, and M. A. Choudhary.
(2006). Rule based production systems for automatic
code generation in Java, 2006 1st Int. Conf. Digit. Inf.
Manag. ICDIM, 300–305,
Doi: 10.1109/ICDIM.2007.369214.

[48]. Sobania, D., Schweim, D., & Rothlauf, F. (2022).
Program synthesis with evolutionary algorithms:
Status quo: hot off the press track (GECCO 2022).
In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 39-40.
Doi: 10.1145/3520304.3534074.

[49]. Sobania, D., Schweim, D., & Rothlauf, F. (2022). A
comprehensive survey on program synthesis with
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 27(1), 82-97.
Doi: 10.1109/TEVC.2022.3162324.

[50]. Hu, K., Duan, Z., Wang, J., Gao, L., & Shang, L.
(2019). Template-based AADL automatic code
generation. Frontiers of Computer Science, 13, 698-
714.

[51]. Danilchenko, Y., & Fox, R. (2012). Automated code
generation using case-based reasoning, routine design
and template-based programming. In Midwest
Artificial Intelligence and Cognitive Science
Conference, 119-125.

[52]. Pinto-Santos, F., Alizadeh-Sani, Z., Alonso-Moro,
D., González-Briones, A., Chamoso, P., & Corchado,
J. M. (2021). A template-based approach to code
generation within an agent paradigm. In Highlights in
Practical Applications of Agents, Multi-Agent
Systems, and Social Good. The PAAMS Collection:
International Workshops of PAAMS 2021,
Salamanca, Spain, October 6–9, 2021, Proceedings
19, 296-307. Springer International Publishing.

[53]. Google. (n.d.). Google Cloud AutoML - Train
models without ML expertise. Cloud
google. https://cloud.google.com/automl/
[accessed: 18 September 2023.].

[54]. de Souza Baulé, D., von Wangenheim, C. G., von
Wangenheim, A., & Hauck, J. C. (2020). Recent
Progress in Automated Code Generation from GUI
Images Using Machine Learning Techniques. J.
Univers. Comput. Sci., 26(9), 1095-1127.
Doi: 10.3897/JUCS.2020.058.

[55]. Baulé, D., von Wangenheim, C. G., von
Wangenheim, A., Hauck, J. C., & Júnior, E. C. V.
(2021). Automatic code generation from sketches of
mobile applications in end-user development using
Deep Learning. arXiv preprint arXiv:2103.05704.

[56]. Tiwang, R., Oladunni, T., & Xu, W. (2019). A deep
learning model for source code generation. In 2019
SoutheastCon, 1-7. IEEE.
Doi:10.1109/SOUTHEASTCON42311.2019.9020360

[57]. Aşıroğlu, B., Mete, B. R., Yıldız, E., Nalçakan, Y.,
Sezen, A., Dağtekin, M., & Ensari, T. (2019).
Automatic HTML code generation from mock-up
images using machine learning techniques. In 2019
Scientific Meeting on Electrical-Electronics &
Biomedical Engineering and Computer Science
(EBBT), 1-4. IEEE.
Doi: 10.1109/EBBT.2019.8741736.

[58]. Lee, C., Gottschlich, J., & Roth, D. (2021). Toward
code generation: A survey and lessons from semantic
parsing. arXiv preprint arXiv:2105.03317.

[59]. Zhu, Q. et al. (2021). Code Generation Based on
Deep Learning: a Brief Review. ESEC/FSE 2021 -
Proc. 29th ACM Jt. Meet. Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 21, 341–353.

https://vocal.media/education/chat-gpt-an-insight-to-fun-facts-for-all-data-scientists
https://vocal.media/education/chat-gpt-an-insight-to-fun-facts-for-all-data-scientists
https://cloud.google.com/automl/

 TEM Journal. Volume 13, Issue 1, pages 726-739, ISSN 2217-8309, DOI: 10.18421/TEM131-76, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 739

[60]. Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-
Reilly, A., Prather, J., & Santos, E. A. (2023).
Programming is hard-or at least it used to be:
Educational opportunities and challenges of ai code
generation. In Proceedings of the 54th ACM
Technical Symposium on Computer Science
Education V. 1 , 500-506.
Doi: 10.1145/3545945.3569759.

[61]. cybertechworld.co.in. (2023). Artificial Intelligence
and Machine Learning in Cybersecurity.
Cybertechworld. Retrieved
from: https://cybertechworld.co.in/artificial-
intelligence-and-machine-learning/
[accessed: 20 September 2023].

[62]. Korzeniowski, Ł., & Goczyła, K. (2019). Artificial
intelligence for software development: the present and
the challenges for the future. Biuletyn Wojskowej
Akademii Technicznej, 68(1).
Doi: 10.5604/01.3001.0013.1464.

[63]. Wangoo, D. P. (2018). Artificial intelligence
techniques in software engineering for automated
software reuse and design. In 2018 4th International
Conference on Computing Communication and
Automation (ICCCA), 1-4. IEEE.
Doi: 10.1109/CCAA.2018.8777584.

https://cybertechworld.co.in/artificial-intelligence-and-machine-learning/
https://cybertechworld.co.in/artificial-intelligence-and-machine-learning/

	1. Introduction
	AI is rapidly changing the software development process, it has the potential to significantly improve the software engineering process [1]. Software development is a complex and demanding process that involves analysis and coding phases [2], [3]. How...
	This progress has led to the development of models and tools capable of generating code from natural language (NL) descriptions [14], sketches, and other input forms [15], [16]. The significance of these AIT is evident in the acceleration of software ...
	1.1. Problem Statement and Significance
	1.2. Aims and Motivation
	1.3. The Paper Structure

	2. Literature Review
	This section summarizes the wide range of methodologies and technologies that have significantly aided the advancement of ACG. Our investigation is divided into six critical approaches, each representing a distinct viewpoint and methodology in the fie...
	2.1. Traditional Approaches
	2.2. Rule-Based Systems
	2.3. Machine Learning (ML)
	2.4. Natural Language Processing (NLP)
	2.5. Deep Learning (DL)
	2.6. Evolutionary Algorithms (EAs)

	3. The Advancements in AIT for ACG
	3.1. The Recent Advancements
	3.2. The Benefits and Improvements Achieved Through AI-based Code Generation

	4. The Challenges, Limitations, and Ethical Considerations
	4.1. Ethical Considerations

	5. Comparative Analysis of AI T for ACG
	5.1. Methodology
	5.2. Evaluation Criteria
	5.3. Strengths, Weaknesses, and Performance

	6. Future Directions and Research Opportunities
	6.1. Directions and Areas for Improvement in AIT for ACG

	7. Conclusion
	References:

