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Abstract –Artificial Intelligence (AI), as one of the most 
important fields of computer science, plays a 
significant role in the software development life cycle 
process, especially in the implementation phase, where 
developers require considerable effort to convert 
software requirements and design into code. 
Automated Code Generation (ACG) using AI can help 
in this phase. Automating the code generation process 
is becoming increasingly popular as a solution to 
address various software development challenges and 
increase productivity. In this work, we provide a 
comprehensive review and discussion of traditional 
and AI techniques used for ACG, their challenges, and 
limitations. By analysing a selection of related studies, 
we will identify all AI methods and algorithms used for 
ACG, extracting the evaluation metrics and criteria 
such as Accuracy, Efficiency, Scalability, Correctness, 
Generalization, and more. These criteria will be used 
to perform a comparative result for AI methods used 
for ACG, exploring their applications, strengths, 
weaknesses, performance, and future applications.  
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1. Introduction

AI is rapidly changing the software development 
process, it has the potential to significantly improve 
the software engineering process [1]. Software 
development is a complex and demanding process 
that involves analysis and coding phases [2], [3]. 
However, it is also known to be expensive, especially 
in environments that adhere to procedures, standards, 
and team structures [4]. Automated code generation 
(ACG) mentioned in [5] is becoming increasingly 
important to software development, especially 
through the use of machine learning (ML) and 
artificial intelligence (AI). It focuses on using a 
transformer-based ML model to generate frontend 
component code for angular, using behavior-driven 
development (BDD) test specifications as input. 
ACG techniques aim to automate repetitive and time-
consuming tasks, allowing developers to focus on 
higher-level design and problem-solving. In recent 
years, researchers have explored the utilization of 
artificial intelligence (AI), particularly deep learning 
(DL) techniques, for ACG due to significant 
advancements in this field. The use of AIT 
Techniques (AIT) in ACG has revolutionized the 
software development field. Machine learning (ML) 
and DL algorithms have been applied to automate 
various aspects of the code generation process [6], 
[7]. Researchers have conducted surveys and 
systematic reviews to investigate the effectiveness of 
different approaches, such as natural language 
processing (NLP) and source code analysis, in 
generating code automatically [8], [9]. Developers 
have even been assisted in writing code more 
efficiently by AI-powered coding companions like 
those introduced by Amazon [10]. Also many of 
application of AI in code generation has been 
explored in different domains such as web 
development, mobile applications, and industrial 
automation [11], [12], [13]. 
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This progress has led to the development of 
models and tools capable of generating code from 
natural language (NL) descriptions [14], sketches, 
and other input forms [15], [16]. The significance of 
these AIT is evident in the acceleration of software 
development and the reduction of programming 
efforts [17], [18]. However, challenges remain, 
including evaluating the performance of AI-based 
code generators and ensuring the quality of the 
generated code [19], [20]. 

 
1.1. Problem Statement and Significance 

 
The problem at hand is to evaluate and compare 

different AIT for ACG in software development, 
where AI can improve all phases of the software 
development life cycle [21]. This research aims to 
understand the strengths and weaknesses of various 
AITs, assess their suitability for different code 
generation tasks, and identify areas for improvement.  

By providing a comparative review of AIT, this 
paper aims to assist researchers and practitioners in 
selecting appropriate techniques for ACG, ultimately 
enhancing the efficiency and quality of software 
development processes. 

 
1.2. Aims and Motivation 

 
The aim of this paper is to provide a 

comprehensive and comparative analysis of AIT for 
ACG in software development; and analyze 
advancements, challenges, and future directions in 
this field. By comparing different AIT, including 
their strengths, weaknesses, and real-world 
applications, the paper aims to facilitate informed 
decision-making and promote the adoption of 
effective AI-based code generation practices. The 
motivation behind conducting a comparative review 
of AIT for ACG in software development stems from 
several key factors as shown in Table 1. 

 
Table 1. Motivation factors and achieved objects 
 

No Motivation factors Achieved objects 
1 Advancements in AI To evaluate the effectiveness and identify strengths and 

weaknesses of various AITs for ACG 
2 Increasing Demand for Automated 

Code Generation 
To pinpoint the most effective AIT and assess their suitability 
across diverse development scenarios.  

3 Varied AIT in Code Generation Understanding the trade-offs and selecting the most appropriate 
technique based on factors such as code quality, scalability, 
and efficiency  

4 Addressing Challenges and 
Limitations 

Identifying these challenges and assessing the extent to which 
different AIT mitigate or exacerbate them. By understanding 
the limitations, researchers can focus on improving these 
techniques and practitioners can make informed decisions 
about their implementation 

5 Future Directions and Research 
Opportunities 

Identify gaps in the existing approaches and propose future 
research directions. 

   
1.3. The Paper Structure 

 
The paper is organized as follows: Section 2 

provides literature review and discussion of 
traditional and AI approaches to code generation and 
their limitations. In Section 3, we present 
advancements in AIT for ACG. Section 4 discusses 
the challenges and limitations of AI-based code 
generation. Section 5 provides a comparative 
analysis of these AITs, emphasizing their strengths 
and weaknesses. Section 6 presents future directions 
and research opportunities. Finally, Section 7 
concludes the paper, summarizing the key findings 
and providing recommendations for researchers and 
practitioners. 

 
 
 
 
 

2. Literature Review  
 

This section summarizes the wide range of 
methodologies and technologies that have 
significantly aided the advancement of ACG. Our 
investigation is divided into six critical approaches, 
each representing a distinct viewpoint and 
methodology in the field of code generation. 

 
2.1. Traditional Approaches 

 
Traditional automated code generation methods, 

predating ML and DL algorithms, rely on rule-based 
(RB) systems, template-based (TB) methods, and 
other conventional programming techniques [22]. RB 
code generation involves predefined rules or patterns 
to transform high-level specifications into executable 
code, particularly useful in domains with repetitive 
and well-defined code patterns.  
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TB code generation utilizes pre-defined code 
fragments with placeholders, allowing developers to 
input specific values or logic. These templates are 
instantiated by the code generation system, 
commonly used in frameworks or specialized code 
generators for rapid code generation in specific 
languages or domains. 

Additionally, traditional methods incorporate 
domain-specific languages (DSLs) or modeling 
languages [20], providing expressive, domain-
specific syntax for articulating code generation 
requirements. The code generation system translates 
these high-level specifications into actual code in the 
target programming language. These traditional 
techniques automate the code generation process 
through predefined rules, templates, and domain-
specific abstractions [22]. Despite their effectiveness, 
they often require manual efforts in rule or template 
definition and may have limitations in handling 
complex or evolving code generation tasks. 

 
2.2. Rule-Based Systems 

 
RB code generation relies on predefined rules and 

patterns to generate code from high-level 
specifications or natural language descriptions. These 
systems use expert knowledge encoded in rules to 
map input specifications to code structures. RB 
systems have been widely used in industrial 
automation and specific application domains where 
the generation process can be well-defined and RB 
[13], [23]. They offer interpretability and control 
over the generated code but may require extensive 
rule engineering and may not handle complex or 
ambiguous specifications effectively. RB systems use 
a set of rules to generate code. The rules are typically 
expressed in a declarative language, such as Prolog 
[24]. 

 
2.3. Machine Learning (ML) 

 
ML techniques have been extensively explored 

for code generation tasks. ML-based code generation 
approaches often involve training models on large 
code repositories to learn patterns, relationships, and 
common coding practices. These models can 
generate code based on the learned knowledge. ML 
techniques such as statistical language models, 
recurrent neural networks (RNNs), and transformers 
have been employed for tasks like auto-completion, 
code summarization, and code generation [25], [2], 
[11]. ML-based approaches can capture complex 
patterns in the data but may struggle with rare or 
unseen coding scenarios and require substantial 
amounts of training data.  

 

For example, A ML-powered service from 
Amazon, CodeWhisperer [26], provides code 
recommendations for developers based on their 
natural comments. 

 
2.4. Natural Language Processing (NLP) 

 
NLP can be used to generate code from NL 

descriptions [27], [28]. NLP techniques such as 
parsing, neural language models, sequence-to-
sequence models [11], semantic analysis, and 
machine translation can be used for this purpose. One 
more study [29] focuses on integrating external 
knowledge sources to enhance NLP-based code 
generation. The research [27] uses DL techniques for 
code generation from NL description. It investigates 
neural network architectures, such as sequence-to-
sequence models, to capture the intricate 
relationships between NL and code. It emphasizes 
the ability of DL models to handle long-range 
dependencies in NL descriptions, leading to 
improved code generation performance [27]. 

 
2.5. Deep Learning (DL)  

 
DL models, such as CodeGRU and deep transfer 

learning, have been developed to model and generate 
source code [30], [31]. Recurrent neural networks 
(RNNs)[32] can capture sequential dependencies in 
code and generate code snippets or complete 
functions. Transformers (e.g., GPT [33], [34], BERT 
[35]), have been widely used for code generation 
[27], [30], [31], allowing the model to attend to 
relevant code contexts and generate code with 
improved context awareness [7]. Graph neural 
networks (GNNs) [36] can handle code represented 
as graphs and capture relationships between code 
entities [15]. DL techniques excel in capturing 
complex patterns and generating code with improved 
accuracy [7]. However, they require large amounts of 
labeled training data, substantial computational 
resources, and may suffer from a lack of 
interpretability. 

 
2.6. Evolutionary Algorithms (EAs) 

 
EAs are a type of ML algorithm that can be used 

to generate code by iteratively mutating and evolving 
existing code. EAs work by starting with a 
population of randomly generated code, and then 
iteratively selecting the best performing individuals 
from the population and mutating them to create new 
individuals. This process is repeated until a 
satisfactory solution is found. EAs benefits: they can 
be used to: generate code that is efficient and 
effective [37], easy to maintain [38], for different 
programming languages, platforms, and applications 
[37].  
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The research provided in [39], proposes a new 
approach to software development that uses artificial 
agents to automate the code generation process. 
Another study [21] explores the integration of AI into 
the Software Development Life Cycle (SDLC). The 
authors posit that AI can automate numerous tasks 
within the SDLC, including requirements gathering, 
analysis, and validation. Such integration has the 
potential to yield substantial productivity 
enhancements and elevate software quality. 

 
 
 
 

3. The Advancements in AIT for ACG 
 

The advancement of AIT has led to a significant 
rise in the popularity of ACG in recent years [21]. 
Various AITs have been employed for code 
generation, including RB systems, ML, DL, NLP, 
and EAs.  

 
3.1. The Recent Advancements 

 
This section provides the recent and the most 

important advancements in AI for ACG in various 
domains, as well as the following AI applications 
used for ACG as shown in Table 2.  

Table 2. AI Applications 
 

No AI Application Description 
1 CodeGRU A context-aware Deep Learning (DL) model with gated recurrent unit (GRU) 

architecture for source code modeling [30]. 
2 Amazon 

CodeWhisperer 
An Machine Learning (ML)-powered coding companion developed by Amazon that 
assists developers in writing code more efficiently and effectively [26]. 

3 BERTGen A multi-task generation model based on BERT (Bidirectional Encoder Representations 
from Transformers) for code generation tasks [35]. 

4 GPT-3 A state-of-the-art language model developed by OpenAI [41] that can be used for 
various Natural Language Processing (NLP) tasks [42], including code generation. 

5 DeepCoder A neural network with leaky ReLU achieves the best performance when compared to 
other approaches[45]. 

6 DL Code 
Completion 

A DL-based code completion approach that uses language models to predict the next 
code token given a partial code sequence [43]. 

7 DL Code 
Editors (e.g., 
GitHub's 
Copilot) [41] 

Code editors powered by DL models that provide intelligent code completion and 
generation suggestions to developers, and can even write entire programs [43], [44] 

8  CodeGAN A model utilizing neural networks and NLP techniques to generate code from high-level 
descriptions or code snippets [6]. 

9  AlphaCode A DL model achieving human-level performance on the Codeforces platform[46]. 
10 Tree-Structured 

Architectures 
Approaches using tree-based representations of code syntax to guide code generation and 
enhance the structural coherence of generated code [19]. 

11 RB Code 
Generation 

Techniques using Rule-Based (RB) systems to generate code based on predefined rules 
and patterns[23], [47]. 

12 EAs for Code 
Generation 

Genetic programming and Evolutionary Algorithms (EAs) applied to code generation 
tasks, optimizing code generation through evolutionary processes [38], [48], [49]. 

13 TB Code 
Generation 

Approaches using templates and patterns to generate code based on predefined structures 
and rules [50], [51], [52]. 

14 Frameworks 
(e.g., 
Tensorflow, 
PyTorch) 

Powerful tools and APIs for building and deploying code generation models, enabling 
researchers and developers to use cutting-edge DL techniques [2], [25] 
 

15 Google Cloud 
AutoML Code 
[50]. 

A service that uses ML to generate code for various programming languages and 
platforms [53]. 

 
3.2. The Benefits and Improvements Achieved Through 

AI-based Code Generation 
 

1. Increased productivity and efficiency: AI-
based code generation automates repetitive and time-
consuming tasks in software development, allowing 
developers to focus on higher-level tasks. It 
accelerates the coding process by generating code 

snippets, templates, or even complete programs, 
reducing the overall development time and effort 
[18], [25]. 

2. Enhanced code quality: AI models can 
analyze large codebases, identify patterns, and learn 
best coding practices from existing high-quality 
code.  
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This enables them to generate code that adheres to 
industry standards, follows coding conventions, and 
incorporates good software engineering principles. 
The generated code is less prone to errors and 
exhibits improved readability, maintainability, and 
modularity [25], [2]. 

3. Enabling code generation from alternative 
representations: AI models can generate code from 
different representations, such as images, diagrams, 
or sketches. This allows developers to express their 
ideas visually or graphically and automatically 
convert them into executable code. It promotes low-
code or no-code development and empowers 
individuals with limited coding skills to create 
functional applications[54], [55]. 

4. Code completion and autocompletion: AI 
models trained on vast code repositories can provide 
intelligent code completion suggestions based on the 
context. They can predict the next lines of code, 
recommend suitable function calls, suggest variable 
names, and provide helpful documentation.  
 

This feature speeds up the coding process and 
reduces the likelihood of syntactic or logical errors 
[25], [43]. 

5. Support for code refactoring: AI models can 
assist in refactoring code by automatically suggesting 
improvements or generating refactored code snippets. 
This helps developers improve the structure, 
organization, and performance of existing codebases 
[2]. 

6. Transfer learning and knowledge sharing: AI 
models trained on large codebases can capture the 
knowledge and expertise embedded within the code 
[31]. 

7. Continuous learning and improvement: AI 
models can be continuously trained on new code 
repositories, incorporating the latest coding practices 
and trends  [6], [56]. 

8. Bridging the gap between NL and code: AI 
models can understand NL of software requirements 
or functionalities and generate corresponding code 
[27], [10]. 

Table 3provides some benefits, impact, and 
lessons learned from the applications of AIT ACG. 

 
Table 3. Impact, benefits, and lessons learned from ATIs applications for ACG 
 

Application Benefits Impact Lessons Learned 
Amazon 
CodeWhisperer 
[26] 

- Context-aware 
code completion 
and bug detection 

- Improved coding 
efficiency 

- AI-powered coding companions can 
enhance developer productivity 

Automatic HTML 
Code Generation 
[57]][9] 

- Faster front-end 
development 

- Reduced manual coding 
efforts 

- AIT can automate repetitive and time-
consuming tasks in web development 

Mobile Application 
Development [55] 

- Simplified mobile 
app development 

- Reduced programming 
efforts 

- AI-based code generation from 
sketches can facilitate rapid 
prototyping and development of mobile 
applications 

Function Block 
Applications [37] 

- Automatic 
generation of 
function block 
applications 

- Faster and more efficient 
development in automation 

- Evolutionary algorithms can optimize 
industrial automation systems 

Source Code 
Modeling and 
Generation [43] 

- ACG based on 
learned patterns 

- Improved code quality 
and consistency 

- DL models can capture complex 
patterns and structures in source code 

Natural Language 
to Code Generation 
[58] 

- Translation of 
natural language 
descriptions into 
code.  

- Enables non-
programmers to express 
intentions in code 
 

- NLP techniques can bridge the gap 
between human language and 
programming languages. 

 
4. The Challenges, Limitations, and Ethical 

Considerations 
 

The utilization of ACG with AITs has garnered 
substantial interest recently owing to its capacity to 
enhance productivity and efficiency in software 
development. Nevertheless, there are various 
challenges and constraints that necessitate careful 
consideration. This section delves into some of these 
challenges and limitations. 

 

1. Lack of Sufficient Training Data: One major 
challenge in AI-based code generation is the 
availability of high-quality training data. Training 
ML models require large and diverse datasets that 
accurately represent the target problem domain. 
However, obtaining such datasets for code generation 
tasks can be difficult due to the proprietary nature of 
codebases or limited access to labeled code examples 
[25], [2]. 
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2. Lack of Contextual Understanding: AI 
models may struggle with understanding the context 
and requirements of code generation tasks, especially 
when dealing with complex or domain-specific 
scenarios [1], [54]. It can be challenging to capture 
the nuances of programming languages, frameworks, 
and libraries, leading to suboptimal code generation. 

3. Limited Training Data: Training data 
availability can be a significant challenge in code 
generation tasks. Generating high-quality and diverse 
training datasets that cover various programming 
languages, frameworks, and coding styles is often 
difficult [2], [43]. Limited training data can impact 
the performance and generalization ability of AI 
models. 

4. Difficulty in Handling Ambiguities: Code 
generation tasks often involve dealing with 
ambiguous or incomplete specifications, making it 
challenging for AI models to generate accurate and 
desired code [59], [34]. Ambiguities in natural 
language descriptions or incomplete requirements 
can result in code that does not meet the intended 
functionality. 

5. Scalability and Performance: Scaling AI 
models for large-scale code generation can be 
computationally expensive and time-consuming[33], 
[10]. Generating complex codebases or working with 
massive code repositories can pose challenges in 
terms of memory, computation, and efficiency. 

6. Overfitting and Generalization: AI models 
trained for code generation tasks are prone to 
overfitting, where they memorize specific patterns 
from the training data but struggle to generalize to 
unseen code examples. This limitation can lead to the 
production of code that lacks robustness and fails to 
handle edge cases or adapt to different scenarios. 
Achieving a balance between capturing common 
patterns and promoting generalization is a significant 
challenge in AI-based code generation [25], [7], [30] 
[55], [27]. 

7. Maintenance and Adaptation: Code 
generation models need to adapt to changing 
programming languages, libraries, and frameworks 
[38], [13]. Maintaining and updating these models to 
accommodate new language features and coding 
practices can be a time-consuming and resource-
intensive process. 

8. Balancing Flexibility and Guided Generation: 
Striking a balance between generating code that 
meets specific requirements while allowing 
flexibility for developers to customize and modify 
the generated code can be challenging [19], [50]. AI 
models need to provide options for customization 
without overwhelming the developer with an 
excessive number of choices. 
 

9. Trust and Safety: As AI models are used for 
automated code generation, ensuring the 
trustworthiness and safety of the generated code 
becomes crucial [22], [51]. Issues such as bias, 
security vulnerabilities, and unintended 
consequences in the generated code need to be 
addressed. 

10. Adoption and Acceptance: Widespread 
adoption and acceptance of AIT for ACG may face 
resistance and skepticism from developers and 
industry stakeholders [60], [4]. Building trust, 
demonstrating the value, and addressing concerns 
around job displacement and loss of control are 
important factors in the successful adoption of AIT in 
code generation. 

11. Code Complexity and Variability: Codebases 
can be highly complex and vary significantly across 
different projects and programming languages. AIT 
for code generation often struggle with capturing and 
understanding the nuances and intricacies of code 
syntax, semantics, and idiomatic patterns. This 
makes it challenging to generate accurate and high-
quality code that aligns with the desired functionality 
and style [25], [2], [7]. 

12. Difficulty in Capturing Context and Intent: 
Understanding the context and intent of the code 
generation task is crucial for producing correct and 
meaningful code. However, AI models may struggle 
to capture the complete context and accurately 
interpret the developer's intent from limited 
information, such as code snippets or natural 
language descriptions. Ambiguities in specifications 
or lack of explicit requirements further complicate 
the code generation process [43], [27], [28]. 

13. Limited Support for Domain-Specific 
Languages and Libraries: AIT for code generation 
often focus on popular programming languages and 
libraries, such as Python or TensorFlow. However, 
many software development projects utilize domain-
specific languages or libraries that are less widely 
studied or have limited available training data. 
Adapting AI models to support such specialized 
domains can be challenging due to the lack of 
resources and specialized knowledge required [25], 
[2]. 

14. Debugging and Maintenance Challenges: 
Generated code produced by AI models may contain 
bugs, logical errors, or suboptimal performance, 
which can be challenging to identify and fix. 
Debugging and maintaining code generated by AI 
systems can be more complex than traditional 
human-written code. This challenge raises concerns 
about the reliability and maintainability of code 
generated through AIT [18], [26], [54]. 
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4.1. Ethical Considerations 
 

The use of AIT in ACG raises ethical and legal 
concerns, particularly when it comes to generating 
code that is used in safety-critical systems or handles 
sensitive data. Ensuring the generated code adheres 
to security, privacy, and ethical guidelines poses 
significant challenges and requires careful validation 
and verification processes [18], [26]. AI-generated 
code presents various ethical considerations, biases, 
and potential risks that need to be addressed to 
ensure responsible and safe use. Here are some key 
points to consider: 

1. Bias and Fairness: AI models trained on 
biased or incomplete data can lead to biased code 
generation. If the training data primarily represents a 
specific demographic or excludes certain groups, the 
generated code may reflect those biases, perpetuating 
inequality and discrimination. It is essential to 
address bias during the training process and 
incorporate diverse and representative datasets [25], 
[11].  

2. Reliability and Accountability: AI-generated 
code may contain errors or produce unintended 
consequences. It is crucial to verify and test the 
generated code thoroughly to ensure its correctness, 
robustness, and safety. Developers and users should 
be aware of the limitations of AI-generated code and 
take responsibility for its outcomes [18].  

3. Privacy and Security: AI models used for 
code generation may process sensitive or proprietary 
information. Safeguarding data privacy and ensuring 
secure code generation are paramount. Developers 
must implement strict security measures to protect 
confidential information and prevent malicious use of 
AI-generated code [26]. 

4. Transparency and Explainability: AI models 
used for code generation often operate as black 
boxes, making it challenging to understand the 
underlying decision-making process [61]. Enhancing 
transparency and explainability in AI systems is 
crucial to build trust and enable effective debugging, 
auditing, and compliance with legal and ethical 
standards [2], [43]. 

5. Intellectual Property and Copyright: AI-
generated code may raise concerns regarding 
intellectual property and copyright. Developers need 
to ensure that generated code adheres to legal and 
licensing requirements and does not violate 
intellectual property rights [54]. 

6. Unemployment and Job Displacement: The 
automation of software development through AI-
generated code has the potential to impact 
employment in the software engineering field. While 
AI can augment developers' capabilities, there is a 
risk of job displacement. Efforts should be made to 
reskill and upskill individuals to adapt to the 
changing landscape and mitigate the negative impact 
on employment [1]. 

7. Human Oversight and Control: AI-generated 
code should not replace human decision-making 
entirely. It is crucial to maintain human oversight and 
control over the generated code to ensure its 
alignment with ethical and legal standards. Human 
intervention is necessary to review, validate, and 
modify the generated code as needed [43], [7]. 

Table 4 provides a summary of main ethical 
considerations, biases, and potential risks [62] related 
to using AIT for ACG. They should be managed 
carefully to ensure the responsible and ethical use of 
ACG in software development. 

Table 4. Ethical considerations, biases, and potential risks 
 

Ethical Considerations Biases Potential Risks 
Bias and Fairness Bias in training data Errors and unintended consequences 
Reliability and Accountability Incomplete or biased datasets Lack of code correctness and robustness 
Privacy and Security Exposing sensitive information Misuse of confidential data 
Transparency and 
Explainability 

Lack of transparency and 
explainability 

Difficulty in understanding decision-making 
process 

Intellectual Property and 
Copyright 

Violation of IP and copyright Legal consequences and infringements 

Unemployment and Job 
Displacement 

Impact on employment in the 
software engineering field 

Job displacement and unemployment 

Human Oversight and Control Lack of human intervention and 
review 

Violation of ethical and legal standards 

 
5. Comparative Analysis of AI T for ACG 

 
In this key section, we will compare and contrast 

different AI techniques used for generating code 
automatically. We will look at how they work, how 
they are measured, and their strengths and 
weaknesses. 

5.1. Methodology 
 

In the Methodology section our approach involves 
a process that aims to understand how AITs are used 
for ACG. Initially we carefully gathered data, from 
the research articles mentioned in the reference 
section ensuring a foundation for our analysis.  
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Then we explored a range of AI methods applied 
in ACG examining how they are implemented in 
contexts. To provide insights we identified the AI 
algorithms used in each method and mapped out the 
intricate technological landscape. Moreover we 
meticulously identified the criteria used to evaluate 
each method emphasizing their effectiveness and real 
world applicability.  

During our analysis we critically evaluated both 
strengths and weaknesses of each method to offer a 
perspective on their performance. This 
comprehensive approach allowed us to gain nuanced 
insights into the evolving field of AIT for ACG and 
laid the groundwork, for discussions and valuable 
conclusions. Figure 1 depicts the proposed structure. 

 
Figure. 1. The general methodology steps 

5.2. Evaluation Criteria 
 

To evaluate the strengths, weaknesses, and 
performance of different AITs for ACG, several  
 

 
 
criteria can be considered. In the Table 5, we provide 
the most common and important criteria. 

Table 5. The evaluation criteria of AI methods used for ACG 
 

No Criteria Description 
1 Accuracy Measure of how well the technique performs in generating correct and functional code [18], [25], [2], 

[43], [63], [39], [21]. 
2 Efficiency The efficiency of the generated code is evaluated based on performance metrics such as execution 

time, memory usage, and computational complexity [40], [63]. 
3 Scalability Evaluation of how well the technique can handle large-scale codebases and datasets [25], [2], [11]. 
4 Generalization Ability of the technique to generalize and perform well on unseen or diverse code examples [25], [11], 

[1]. 
5 Interpretability Degree to which the technique provides understandable and interpretable results [1], [54], [7]. 
6 Robustness Resilience of the technique to handle noisy or incomplete input code [2], [7], [10]. Robustness 

evaluation helps ensure the reliability and adaptability of the ACG system. 
7 Adaptability Capability of the technique to adapt to changing code requirements or contexts [20], [21], [40]. 
8 Training Data 

Requirements 
Assessment of the amount and quality of labeled training data needed for the technique [2], [54]. 

9 Handling Rare 
Patterns 

Evaluation of the technique's ability to handle rare or uncommon code patterns [9]. 

10 Language 
Support 

Assessment of the technique's applicability and effectiveness across different programming languages 
[11], [59], [27]. 

11 Correctness The generated code should be correct and function as intended. It should accurately implement the 
desired functionality without introducing errors or bugs. Evaluating correctness involves comparing 
the generated code against the desired specifications and assessing its ability to produce the expected 
output [40]. 

12 Completeness The generated code should cover all the necessary functionality and requirements specified by the 
given input. Evaluating completeness involves analyzing whether the generated code addresses all the 
required features and functionality, leaving no critical gaps or missing components. [40], [21]. 

13 Maintainability Evaluating maintainability focuses on the ease of understanding, modifying, and extending the 
generated code. Factors such as code readability, modularity, and adherence to coding standards are 
considered. Assessing maintainability involves reviewing the code structure, documentation, and the 
availability of appropriate abstractions and encapsulation. [40], [63], [39], [21]. 
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Figure 2 shows the frequency of most important 
evaluation criteria used in the selected research. For 
example, correctness, accuracy, maintainability, 
 

robustness, and consistency are highly used, while 
portability used with low frequency, and the others 
are medium frequently used. 

 

 
 

Figure. 2. Frequency of used criteria 

5.3. Strengths, Weaknesses, and Performance 
 

Depending on the evaluation criteria extracted 
from related researches, we were able to extract 

 
points of strength, weakness, and performance as 
shown in the Table 6. 

Table 6. Comparative analysis of AIT for ACG 
 

AIT Strengths Weaknesses Performance 
TB • Simplicity and ease of use. 

• Well-suited for repetitive 
patterns 

• Limited flexibility and 
adaptability. 

• Limited handling of complex 
logic. 

• Fast code generation for specific tasks. 
• Limited scalability for diverse 

applications. 

RB • Explicit representation of 
domain knowledge. 

• Clear traceability of code 
generation decisions. 

• Requires extensive rule definition.  
• Complexity increases with rule set 

size. 

• Efficient for applications with clear rule 
structures.  

• Suitable for well-defined, rule-bound 
domains. 

DL • Ability to learn complex 
patterns from data. 

• Adaptability to diverse and 
evolving requirements. 

• Dependence on quality and 
quantity of training data. 

• Lack of interpretability in 
decision-making. 

• Good performance for tasks with 
sufficient training data. 

• Requires continuous training for 
changing contexts. 

DL • Capability to capture intricate 
syntax and semantics. 

• End-to-end learning for 
feature extraction. 

• Demands large amounts of high-
quality training data. 

• Computational complexity in 
training deep models. 

• High accuracy in generating 
contextually rich code. 

• Superior performance for tasks with 
complex patterns. 

EAs • Exploration of diverse 
solution spaces. 

• Adaptive to changing problem 
landscapes. 

• High computational overhead for 
complex problems. 

• Convergence to optimal solutions 
not always guaranteed. 

• Effective for optimization-based code 
generation tasks. 

• Suitable for heuristic-driven, complex 
optimization tasks. 

NLP • Can be used to generate code 
from natural language 
descriptions. 

• This can be a more natural way to 
generate code for non-technical 
users. 

• Can be effective for generating code for 
simple tasks, but it is not as effective for 
generating code for complex tasks. 

 
Please note that the performance of these 

approaches can vary based on the specific context 
and problem domain. Additionally, advancements in 
technology and methodologies could impact the 
strengths, weaknesses, and performance of these 
approaches in the future. 

 
 
 
 
 
 

6. Future Directions and Research 
Opportunities 
 

In this section, we hope to highlight potential 
pathways and unexplored avenues that merit further 
investigation and innovation.  
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By identifying these opportunities, we hope to 
chart a course for future research that will address 
existing challenges, leverage new technologies, and 
ultimately push the boundaries of what is possible in 
automated code generation. This forward-thinking 
exploration aims to shape the future rather than 
simply predict it. 

 
 

6.1. Directions and Areas for Improvement in AIT for 
ACG 
 

Based on the reviewed references, we found 
important potential research directions and areas for 
improvement in AIT for ACG such as: Integration of  
NLP and Code Generation, ML for Big Code and 
Naturalness, and others. The most important 
directions are provided in Table 7. 

 
Table 7. Directions and areas for improvement in AIT for ACG 
 

No Directions Improvement in AIT for ACG 
1 Integration of NLP and 

Code Generation 
Investigate methods to improve the understanding and translation of natural language 
descriptions into executable code  [27], [29]. This could involve exploring techniques such as 
pre-training models with external knowledge [29], incorporating lexical and grammatical 
processing, and leveraging DL  models for better source code modeling [7], [30], [31]. 

2 ML for Big Code and 
Naturalness 

Explore ML approaches that leverage big code repositories to improve ACG [25]. This could 
involve using techniques like neural networks, DL, or transfer learning to capture patterns and 
generate code that aligns with the naturalness of human-written code 

3 Code Generation from 
GUI Images 

Investigate AIT to automatically generate code from graphical user interface (GUI) mock-up 
images [9], [54]. This area could involve developing computer vision models combined with 
DL techniques to recognize UI elements and generate corresponding code. 

4 Code Generation using 
EAs 

Explore the application of evolutionary algorithms in automating code generation [37], [48], 
[49]. This research direction could involve investigating how evolutionary algorithms can be 
used to generate optimized code and solve complex programming problems. 

5 Improving AI Model 
Training and Evaluation 

Improving AI models training and evaluation can help in addressing some challenges such as 
selection of dataset, generalization, and interpretability  [2], [6]. 

6 TB Code Generation This research direction could involve developing advanced template systems that can generate 
code based on predefined templates and adapt to different contexts or requirements. 

7 ACG for Specific 
Domains 

Exploring AITs for ACG in specific domains (industrial, self-adaptive, mobile) can improve 
these domains and algorithms used for generating code [22], [55]. 

8 Code Generation Tools 
and IDE Integration 

This direction enhances developer productivity and support real-time code suggestions or 
completions [26], [43]. 

9 Software Maintenance 
and Refactoring Support 

Investigate AIT for ACG that can assist in software maintenance tasks, such as refactoring or 
bug fixing [18]. 

10 DL -based Code 
Generation 

DL-based architectures can capture complex patterns and dependencies in code and generate 
high-quality code snippets. 

11 Performance 
Optimization 

Performance optimization can enhance efficiency of the generated code, and performance 
metrics such as execution time, memory usage, or energy consumption. 

12 Human-in-the-Loop 
Approaches 

Explore approaches that incorporate human feedback and interactions into the code generation 
process. This can involve techniques such as interactive code completion, code refactoring 
suggestions, or collaborative code generation environments that combine human expertise 
with AI capabilities 

13 Hybrid Approaches Integrate AIT with traditional RB or TB methods to harness the advantages of both 
approaches. 

14 Domain-Specific 
Languages (DSLs): 

Design and implement DSLs that are optimized for code generation tasks in specific 
application domains. DSLs can provide high-level abstractions and specific syntax tailored to 
the domain, enabling more efficient and accurate code generation [25], [2] 

15 Transfer Learning and 
Pre-training 

Transfer learning can be used to improve code generation by pre-training models on large 
code repositories or related tasks.  

16 Multi-modal Code 
Generation 

Explore techniques that combine multiple modalities, such as code snippets, natural language 
descriptions, and diagrams, to generate code. This approach can improve the accuracy of 
generated code 

17 Incremental Code 
Generation (ICG) 

Create ICG algorithms, allowing developers to enhance generated code. 

 
The ongoing research, in AITs aimed at ACG has 

the potential to greatly transform the field of software 
development. Although there are some obstacles to 
overcome the continuous efforts being made in this 

 
 
 
 

area are yielding progress. By prioritizing the 
suggested research directions and implementing 
improvements we can further enhance AIT for ACG 
making it more robust, effective, and user friendly. 
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7. Conclusion 
 

Finally, in this work, various AITs for ACG in 
software development have been discussed and 
compared; it highlighted the limitations of traditional 
and AI approaches, and explored the introduction of 
AI techniques in code generation. Through our 
analysis, we have identified the strengths and 
weaknesses of different AITs, including RB systems, 
ML, and DL.  

These techniques have shown significant 
advancements in generating code, improving 
efficiency, and enhancing code quality. We have also 
discussed their relevance and applicability to 
different code generation tasks. Furthermore, we 
have presented recent developments and innovations 
in AI techniques for code generation, showcasing 
case studies and real-world applications that 
demonstrate their effectiveness. The evaluation 
metrics commonly used to assess the performance of 
AI-based code generation systems were discussed as 
well. While AI techniques offer great potential in 
automated code generation, they come with their own 
challenges and limitations. Data requirements and 
availability for training AI models, scalability, 
efficiency, and the interpretability of AI-generated 
code are among the key challenges that need to be 
addressed.  

These considerations will shape the adoption and 
integration of AI techniques in real-world software 
development. Based on our comparative analysis, we 
have provided insights into the strengths and 
weaknesses of each AI technique, enabling 
researchers and practitioners to make informed 
decisions in selecting and combining methodologies 
based on specific requirements and constraints. The 
implications of AI-based code generation in software 
development are significant. By automating 
repetitive and time-consuming code generation tasks, 
developers can focus more on higher-level design 
and critical problem-solving. This can lead to 
increased productivity, accelerated software 
development cycles, and improved software quality. 
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