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Abstract – Stroke is one of the major killer diseases 
in the world. Understanding the factors that influence 
the death of stroke patients is vital to improving 
patient care and outcomes. In this study, we used 
stroke patient data and machine learning techniques 
using a variety of algorithms, including Extreme 
Gradient Boosting, CatBoost, Extra Tree, Decision 
Tree, and Random Forest, to predict patient death 
after stroke. After performing hyperparameter 
settings, the XGBoost model achieved an accuracy of 
86% with an AUC of 87. Significant improvements in 
the accuracy and predictive capability of this model 
after hyperparameter settings indicate a strong 
potential for clinical applications. In addition, our 
findings suggest that factors such as the patient's age, 
type of stroke, and blood pressure at the time of 
hospitalization have a significant impact on stroke 
patients' deaths. By understanding these factors, 
healthcare providers can improve patient intervention 
and management to reduce the risk of death after 
stroke. This research has made an important 
contribution to the development of a system for 
predicting the risk of death of stroke patients, which 
can help doctors and nurses identify high-risk patients 
and provide appropriate treatment.  
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1. Introduction

Stroke is the leading cause of death and disability 
worldwide [1]. In the Global Stroke Fact Sheet 
released in 2022, it was found that more than 101 
million people have experienced stroke, with 6.5 
million people dying each year [2]. Between 1990 
and 2019, there was a significant increase in stroke 
incidences of 70%, stroke deaths of 43%, stroke 
prevalence of 102%, and disability adjusted life years 
(DALY) increased by 143%  [3].   Understanding the 
type of stroke is also important, with the global 
prevalence in 2019 reaching 101.5 million, divided 
into 77.2 million for ischemic stroke, 20.7 million for 
intracerebral bleeding, and 8.4 million for 
subarachnoid bleeding [4]. A stroke occurs when the 
blood supply to the brain is interrupted, so the brain 
cells cannot obtain the oxygen and nutrients they 
need. This can be caused by a blockage or rupture of 
blood vessels in the brain [5]. 

In Indonesia, stroke was the number one cause of 
death that killed 328,5 thousand people (21.2% of the 
total deaths) in 2019 [6]. Between 2013 and 2018, 
Indonesia witnessed a surge in stroke cases, with the 
occurrence rising from 8.3 cases per 1,000 
individuals to 12.1 cases per 1,000 individuals. The 
highest incidence of stroke occurred in the East Java 
region at 12.4% (113.045), in West Java at 11.4% 
(131.846), and in Central Java at 11.8% (96.794) [7]. 
Meanwhile, the Central Java Health Service report 
stated that the prevalence of non-hemorrhagic stroke 
in Central Java in 2018 was 18,284 cases, which is 
an increase of 0.05% higher than in 2017. The stroke 
data in Semarang showed the prevalence of new non-
hemorrhagic stroke cases in 2018 at 800 cases [8] 

According to clinical reviews, there are various 
factors that have the potential to influence the 
prognosis of stroke.  
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In general, these factors can be categorized as 
basic patient information, complications, stroke 
subtypes, and treatment plans [9]. The presence and 
interaction of these diverse factors make the 
identification and management of stroke patients' 
prognosis increasingly complex and requires careful 
therapeutic planning. Taking these variables into 
account, predicting stroke deaths is a good indicator 
for evaluating the effectiveness of stroke treatment, 
and identifying predictors of death in hospitals is 
important for improving stroke outcomes [10]. 
However, early detection of stroke is still a 
challenge, as stroke symptoms can be difficult to 
recognize, especially in the early stages. Therefore, 
the use of machine learning technology plays an 
important role.  

Machine learning has shown great potential for 
predicting the death rate of stroke patients [11]. The 
complexity of strokes is potentially suitable for the 
use of machine learning algorithms, which are able to 
combine a large number of variables and 
observations into one predictive model [12]. Previous 
studies have shown that machine learning is able to 
provide accurate predictions of stroke-related deaths 
based on a range of clinical information, including 
demographic data, medical history, and medical 
examination results. 

The primary aim of this study is to investigate 
the utilization of machine learning methodologies for 
forecasting stroke-related fatalities at Banyumas 
Regional General Hospital (RSUD) in Indonesia. 
Using data from patients who have had a stroke at the 
Banyumas Medical Center, the study seeks to 
develop accurate prediction models using various 
machine learning algorithms. This research is 
expected to make a significant contribution to more 
effective prevention and management of stroke risk 
in this hospital environment. This research provides 
an important contribution to the development of a 
system for predicting stroke patient risk of death at 
RSUD Banyumas, which will later help doctors and 
nurses identify high-risk patients and provide 
appropriate treatment.  

In addition, the research also broadened our 
understanding of the risk factors for the death of 
stroke patients, which could support the development 
of more effective public health policies in stroke 
prevention and management efforts at RSUD 
Banyumas. 

 
2. Related Work 
 

Numerous research endeavors have delved into 
the utilization of machine learning methods for the 
assessment and anticipation of mortality risk in 
individuals afflicted by strokes. 

Zhu et al. have developed a machine learning 
model to predict mortality in stroke patients. The 
data used came from MIMIC-IV with more than 
70,000 patients. Several models, including logistic 
regression, SVM, and random forest, were developed 
and trained with demographic data, medical history, 
and laboratory data. As a result, the random forest 
model obtained the highest accuracy with an AUC of 
0.85. This shows the model's ability to accurately 
classify survivors and deceased patients at 85 percent 
[11]. 

Another study by Rahim et al. discussed the 
development of the XGBoost model to predict stroke 
cases at Dr. Sardjito Central General Hospital in 
Yogyakarta, Indonesia. The data set used includes 
information from 200 patients. Research results show 
that the XGBoost model has a 90% accuracy rate in 
predicting stroke cases. In addition, the model is also 
able to identify factors associated with an increased 
risk of stroke [13]. 

Tazin et al. have also conducted research on the 
detection and prediction of stroke disease using the 
robust learning approach in their research. These 
findings confirm that the decision tree is one of the 
most effective methods for detecting and predicting 
stroke disease  [14]. 

The study of Sharma et al. presented additional 
insights regarding the use of extra-tree classifiers in 
the context of breast cancer prediction. The findings 
from the study demonstrated that the model extra tree 
classifiers with 100 estimators achieved an accuracy 
of 97.35%. Moreover, the model of the extra-tree 
classifier with 200 estimators reached an accuracy of 
96.64%. These results indicated that models with 100 
estimators had higher performance in the 
classification of breast cancers compared to models 
using 200 estimators [15]. 

Safaei et al. introduced E-CatBoost into the 
context, a resourceful machine learning framework 
designed for mortality prediction among ICU 
patients. The model's efficacy was evaluated through 
the assessment of its performance using the Area 
Score under the Receiver Operating Characteristic 
Curve (AUROC), which ranges from 0.86 to 0.92 for 
the CatBoost model and from 0.83 to 0.91 for the E-
catBoost in the specified disease group. The results 
showed that both were able to achieve high AUROC 
scores, with E-KatBoost providing a significant 
improvement in the accuracy of predicting ICU 
mortality, especially when measured in the entire 
patient population [16]. 

 
3. Methodology 
 

This research adopts the framework of Rui Chen 
et al. [17] which discusses long-standing forecasts of 
hospitalization of ischemic stroke patients in China.  
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The stages of this system are as follows: 
 

 
 

Figure 1. Flowchart 

 
3.1. Data Collection 

 
The study uses data from adult patients receiving 

treatment at the Neural Clinic of the Regional 
General Hospital (RSUD) in Banyumas, Indonesia. 
Data was collected during the period from January 
2022 to May 2023. The data collection process 
involves the observation and recording of medical 
information by the RSUD research team, including 
demographic data, medical history, and patient 
clinical records. In total, there are 106 patient records 
with 29 attributes available. The attributes of the 
original stroke patient data can be found in Table 1. 

 
Table  1. Original stroke dataset 
 

Attribute 
name 

Description 

Number Entity number 
Enumerator Observer 
Data 
Collection 
Date 

Data Collection Date 

Patient 
Condition 

Patient Health Status 

Resp Code Prescription Code 
Entry Date Date of Patient Admission 
Out Date Date of Patient Discharge 
Age Age of Stroke Patient 
Gender Refers to the category or identity 

of a person's gender 
Debtors Source or type of health 

insurance held by the patient 

Employee Occupation or profession of the 
patient 

Marital Status Patient Marital Status 
Primary 
Diagnosis 

Diagnosis or primary medical 
condition suffered by the patient 

History Of 
CVD 

Information on cardiovascular 
disease history, such as previous 
heart disease or stroke 

Prior Disease 
History 

Information about other previous 
medical conditions suffered by 
the patient 

Previous 
Stroke History 

Information on whether the 
patient has a history of stroke 
prior to the observed case 

Initial 
Scanning Date 

Date of the first examination or 
scan conducted on the patient 

Stroke 
Location 

Information about the location of 
the stroke attack in the patient 

DLO Test 
Date 

Date of Blood Test 

HB Hemoglobin, a component of red 
blood cells that binds to oxygen 

HT Hematocrit, the proportion of 
blood volume filled with red 
blood cells 

LEU Leukocytes, a type of white 
blood cell 

TR Platelets, a type of blood cell 
involved in blood clotting 

NLR Neutrophil-Lymphocyte Ratio, 
the ratio of neutrophils to 
lymphocytes in the blood 

LIPID Test 
Date 

Date of Blood Lipid Profile Test 

CHOL Total Total Cholesterol, the aggregate 
cholesterol level in the 
bloodstream 

HDL High-Density Lipoprotein, a type 
of cholesterol known for its role 
in reducing excess cholesterol in 
the blood. 

TG Triglycerides, a type of fat in the 
blood 

LDL Low-Density Lipoprotein, a type 
of cholesterol considered "bad" 
because it can clog arteries. 

 
In this study, the prediction of mortality risk is 

categorized as a classification problem, to predict 
patient mortality based on the attributes of the patient 
condition in the dataset of Table 1, which contains 
information on patients with mortality status and 
patients who are healthy or recovering. 
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3.2. Exploratory Data Analysis (EDA) 
 
EDA is a method employed to scrutinize a 

dataset with the intention of summarizing its primary 
characteristics [18].  

In the context of this study, EDA is employed to 
acquire a comprehensive insight into the attributes of 
the data within a stroke dataset. EDA helps reveal the 
relationship between variables, providing an initial 
insight into patterns and trends that may be reflected 
in the data. 

 
 

Figure 2. Correlation of stroke dataset 
 

Data correlation visualization is used to evaluate 
the degree of correlation between variables using a 
heat map, which describes the relationship of 
variables in a dataset [19]. This approach is useful for 
summarizing the correlational matrix in a data set, 
where each element represents the coefficient of 
correlation between two variables. In the context of 
machine learning, heatmaps serve the purpose of 
revealing highly correlated variables within datasets, 
both in relation to target variables and among 
themselves [20].  

As seen in Figure 2, correlations between 
variables in stroke patient data can be identified. For 
example, hemoglobin (HB) and hematocrit (HT) 
levels show a very strong positive correlation of 
around 0.94.  

 
 
 

 
Also, the number of leukocytes (LEUs) and the 

neutrophil ratio to lymphocytes (NLRs) show a 
significant positive correlation of about 0.507816. 
Furthermore, total cholesterol (total cholesterol) and 
low-density lipoprotein (LDL) also have a high 
positive corollary, about 0.95. On the other hand, the 
correlation between the patient's condition and 
gender (0.25) and age (0.08) is moderate. Age and 
financial status (debtor) indicate a moderate negative 
correlation of around -0.16.  

However, there are no significant correlations 
between patient condition and hospitalization length 
(-0.05) or between age and hospital duration (-0.002). 
Furthermore, financial status and sex also show low 
correlations of around 0.035891. 
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3.3. Feature Selection 
 

Feature selection is a crucial stage in this 
research that allows us to select the most relevant and 
informative subset of attributes to analyze predictions 
of mortality in stroke patients. From the initial data 
set consisting of 106 patient samples and 29 
attributes, the study carried out a careful feature 
selection based on a number of critical factors. Of the 
18 variables, the study divided them into two main 
categories that facilitated analysis, namely 
demographic information and medical history.  

The first group included attributes related to 
patient characteristics and their medical history, 
while the second group contained attributes related to 
medical test results and health parameters, as listed in 
Table 2. In this process, we consider the following 
factors: 
1) Rational selection of features based on medical 

and methodological relevance 
2) Evaluation of data quality to ensure that only 

attributes with quality data are included in the 
analysis 

3) Removal of irrelevant attributes to reduce 
complexity and noise in the model 

4) Understanding the potential interaction or 
correlation between the attributes selected to 
ensure proper analysis 

 
Table  2. Selected variables of stroke dataset 

 

Categories Variables 

Demographic 
characteristics 
of the patients. 

 Length of hospitalization 
 Age 
 Gender 
 History of Cardiovascular Disease 
 Past Medical History 
 Previous Stroke History 
 Patient Conditions 

Medical Data 

 HB (Hemoglobin) 
 HT(Hematocrit) 
 LEU (Leukocyte) 
 TR (Thrombocyte) 
 NLR(Neutrophil-Lymphocyte Ratio) 
 Cholesterol Total (Cholesterol Total) 
 HDL (High-Density Lipoprotein) 
 TG (Triglyceride) 
 LDL (Low-Density Lipoprotein) 
 Stroke Location 

 

 

3.4. Data Preprocessing 
 
In the preprocessing phase, several crucial steps 

were undertaken in this study to prepare the data 
before employing it in constructing predictive 
mortality models for stroke patients. 
 

3.4.1. Handling the missing value 
 

Handling the missing data is undeniably one of 
the foundational challenges in the realm of machine 
learning. Among many approaches, the simplest and 
most intuitive way is zero imputation, which treats 
missing entry values the same as zero [21]. In the 
context of this study, missing values have been 
identified on several attributes, including "History of 
Cardiovascular Disease", "Past Medical History", 
and "Previous Stroke History". Proper handling of 
missing values is essential to ensuring the integrity 
and relevance of the data before proceeding to the 
analysis stage. The 0-value impotence was chosen 
because of its high medical relevance in the context 
of predictive mortality research and hospitalization 
time for stroke patients. 

The patient’s medical history stands as a crucial 
determinant influencing both treatment outcomes and 
the ability to predict prognosis. A replacement with a 
value of 0 makes it possible to separate patients who 
have a history of disease from those who have no 
history of illness. Identifying a patient who has no 
history of a particular disease is relevant information 
for a medical professional who will analyze the 
results of this study. In addition, replacing 0 with 0 
ensures that the data remains in a consistent 
numerical format. 

 
3.4.2. Encoding variable 

 
The process of dealing with categorical or non-

numerical attributes in the datasets is carried out. 
Categorical variable encoding is an important step in 
the preparation of data for predictive models, as most 
machine learning models require numerical data [22]. 
In this study, the variables length of hospitalization, 
gender, and patient conditions were encoded using 
one-hot encoding, while stroke location, history of 
cardiovascular disease, past medical history, and 
previous stroke history were coded using coding 
labels. Encoding categorical variables with the right 
method is a key to ensuring that the data used in the 
modeling is an appropriate representation of the 
information contained in the dataset. 

 
3.4.3. Splitting the Data 

 
Split datasets are intended to divide data sets into 

training and testing data that will be used for 
modeling. It is commonly used in 80:20 or 80:10:10 
configurations [23]. In this study, the 80:20 split 
configuration is used, where 80% of the data from 
the data set is used by machines to determine patterns 
and 20% will be used as data to make predictions. 
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3.5. Machine Learning Algorithm  
 

In this section, we will provide an overview of the 
five algorithms that are the focus of this research. 
These algorithms play an important role in improving 
model performance, with each adopting a different 
approach. 

 
3.5.1. Extreme Gradient Boosting 

 
Extreme gradient boosting (XGB) is an open-

source library that provides efficient and effective 
implementation of gradient enhancement algorithms 
[24]. XGB uses advanced regularization (L1 and L2), 
which enhances model generalization capabilities 
[25]. The basic concept of boosting is to build more 
accurate models by combining hundreds of simple 
tree models with low accuracy, in which each 
iteration will produce a new tree for the model. The 
complexity of the tree will affect the outcome [26]. 

 
3.5.2. CatBoost Classifier 

 
The CatBoost Classifier uses sequential target 

statistics and sequential improvements that make it 
good for heterogeneous data categorical values and 
has strong performance compared to other 
implementations of gradient improvement decision 
trees [27]. This feature helps improve the 
generalization performance of the model and makes 
it more resilient to new health data [16]. 

 
3.5.3. Random Forest 

 
The Random Forest (RF) is a popular ensemble 

model specifically created to overcome the 
limitations of the traditional decision tree algorithm. 
The RF technique involves training many decision-
tree learners simultaneously to minimize the bias and 
variance of the model [28]. Large-scale studies in 
general literature provide evidence that supports 
some class families like random forest (RF) in terms 
of classification performance [29]. 

Random forest algorithms have been known for 
their high accuracy in predicting diseases in medical 
research [30]. Random forests offer the advantages of 
being easily interpretable, swift to train and evaluate, 
demonstrating proficiency in intricate datasets, and 
exhibiting resilience against irrelevant features. 

 
 
 
 
 
 
 
 

3.5.4. Extra Tree Classifier 
 
ExtraTrees is an ensemble ML approach that 

trains numerous decision trees and aggregates the 
results from the group of decision trees to output a 
prediction. However, there are few differences 
between extra trees and random forests. They work 
in a slightly different way.  

Another important difference is in the way they 
choose where to share information within the 
decision tree. Extra trees does this in a random way, 
which means he chooses a random value to divide 
the feature and create a new branch in the tree. On 
the other hand, random forest uses a more intelligent 
algorithm to find and select the best value for 
dividing the feature [31]. 

 
3.5.5. Decision Tree  

 
The decision tree algorithm works by dividing the 

data into several parts recursively and assembling the 
parts based on the characteristics that most 
distinguish the class until the termination criteria 
meet [32]. The described algorithm is a supervised 
machine learning method known for its capability to 
partition data into segments or branches, based on 
various input variables. The branches of the decision 
tree are arranged upward, with the top branches 
representing the final result [33]. 

 
3.6. Hyperparameter Tuning 

 
In machine learning methods, there are a series of 

parameter values that are thought to improve model 
performance, known as hyperparameters. 
Hyperparameters are used to improve algorithm 
performance, and this has a significant impact on a 
variety of model tests. The hyperparameter 
adjustment process can be done manually or by 
testing a group of hyperparameter on a previously 
specified parameter [34].  

The study uses the Optuna library to optimize the 
performance of the mortality prediction model for 
stroke patients. Optuna defines the hyperparameter 
optimization challenge as the task of minimizing or 
maximizing a target function, which accepts a set of 
hyperparameters as input and provides a score as the 
output (validation). Optuna also provides 
abbreviation, i.e., automatic initial stop of 
unpromising trials [33]. 
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Table  3. Tuning parameters of the algorithms 
 

Parameters Description Range 
n_estimators The number of trees in the model. This 

controls how many trees will be used in the 
ensemble (e.g., in Random Forest or 
XGBoost). 

100 - 300 

max_depth Controls the maximum depth of trees in the 
model. A larger max_depth value will result in 
a more complex model. 

3 – 12 

learning_rate The learning rate controls how big steps the 
model will take during the learning process. 

0.1 - 1.0 

subsample The proportion of data samples used to train 
each tree. 

0.5 - 1.0 

gamma The minimum threshold for splitting a node. 0.6 - 1.0 
colsample_bytree Proportion of features each tree. 0.0 - 1.0 

reg_alpha Regulation L1 to prevent overfitting 0.0 - 1.0 
reg_lambda Regulation L2 to control complexity 0.0 - 1.0 

min_samples_split Minimum number of samples to divide the 
node 

0.1 – 1.0 

min_samples_leaf Minimum amount of sample in each leaf 0.1 – 0.5 
max_features Maximum characteristics for node separation 0.1 – 0.5 

min_weight_fraction_leaf Total weight ratio for one leaf Criteria for 
evaluation of node segregation 

0.0 – 0.4 

criterion The criterion used to measure the quality of 
splitting at each node in the decision tree. 

“gini”, “entropy” 

iterations The number of iterations or steps taken by the 
model during the learning process. 

100-500 

12_leaf_reg A specific parameter for setting trees. 1-10 
border_count The number of bins or categories for use on 

categorical data. 
10-255 

thread_count The number of threads or threads to be used by 
the model during training. 

-1 

loss_function The loss function to be optimized during the 
learning process. 

Logloss 

random_seed Setting to ensure that the model's results can be 
reproduced. 

123 

verbose The level of noise or information to be 
displayed during the training or model 
evaluation process. 

False 

 
3.7. Model Performance Evaluation 

 
To evaluate the performance of the classification 

used in this study, the data set was divided into two 
parts: an 80% training data set and a 20% test data 
set. A confusion matrix is used to compare 
classification performance. The confusion matrix 
describes how often models estimate correctly and 
how often they estimate incorrectly. False positives 
and false negatives are allocated to poor predictive 
values, while true positives and negatives are actually 
placed on the correctly anticipated values [14].  

To evaluate performance, we use metrics such as 
precision, recall, F1 score, and accuracy calculated 
based on the confusion matrix and its formulas 
below: 

Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

  (1) 

F1-score = 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

  (2) 

Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

  (3) 

Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁

   (4) 
where TP = True positive, TN = True 

Negative, FP = False Positive, and FN = False 
Negative [35].  
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In addition, this study illustrates the performance 
of models using a Receiver Operating Characteristic 
(ROC) curve that displays a trade-off between 
sensitivity and specificity at each threshold [36]. The 
area value below the ROC curve (AUC) represents a 
higher probability of ranking the randomly selected 
positive instance than the randomly selected negative 
instance. A better model than the random one will 
have an AUC value greater than 0.5, while the 
perfect model will have an AUC value of 1.0 [37]. 
 
4. Results and Discussion 

 
The study applied the 80:20 data division scheme, 

where 80% of the total sample was used for model 
training processes, while the remaining 20% was 
used to test model performance. The initial dataset 
consisted of 106 data samples. Of these, 84 samples 
were used as training data (X_train), while 22 
samples were used as test data (X_test). 

 
4.1. Model Testing Without Hyperparameter Tuning 

 
The comparison results of the fifth algorithm's 

performance in predicting mortality in stroke patients 
are recorded in Table 4. The Extreme Gradient 
Boosting (XGB) model was able to achieve a 
significant accuracy of 73% and showed a good level 
of accuracy, reaching 75% in identifying patients 
with a healthy status. Moreover, the model also 
recorded the highest recall rate, reaching 60% in 
recognizing patients who are truly at high risk of 
death (mortality). The CatBoost model also showed 
satisfactory results, with an accuracy rate of 68%.  

On the other hand, the decision trees, extra trees, 
and random forest models showed similar 
performance, but with a lower degree of precision 
and a lower F-1 score.  

In terms of prediction of mortality, measurements 
of the ROC AUC are used to assess the extent to 
which the model can distinguish between survivors 
and non-survivors with a high degree of accuracy. 
Figure 3 shows that the XGB and CatBoost models 
have high ROC AUC values, indicating excellent 
performance. Therefore, the ROC AUC chart is used 
to measure and compare the predictive capabilities of 
both models in terms of mortality prediction. 
 
Table 4. Algorithm performance on untuned mortality 
prediction 
 

  Mortality 
(1) 

Healthy 
(0) 

Accura
cy 

Precisio
n 

XGB 71 75 

XGB  
73 % 

Extra 
tree 57 60 

CatBoos
t 71 67 

DT 57 60 Extra 
Tree 
59 % 

RF 57 60 

Recall 

XGB 60 83 
Extra 
tree 40 75 

CatBoo
st 

68% 
CatBoos
t 50 83 

DT 40 75 
RF 40 75 

DT 
59% 

F-1score 

XGB 67 77 
Extra 
tree 47 67 

CatBoos
t 59 74 

RF 
59% DT 47 67 

RF 47 67 
 

 
 

Figure 3. ROC Curve for mortality prediction 
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4.2. Model Performance after Hyperparameter Setting 
 

Hyperparameter setting is a crucial step in 
ensuring that the machine learning model achieves 
optimal performance. In this study, hyperparameter 
settings were performed on a number of algorithms, 
including Extreme Gradient Boosting (XGB), Extra 
Tree, CatBoost, Decision Tree (DT), and Random 
Forest (RF). The primary mission of this setup is to 
improve the ability of the model to predict mortality. 
The best results of the hyperparameter setup process 
can be found in Table 5. The setup results reflect 
dedication to optimizing the machine learning model 
so that predictions of mortality and the duration of 
stroke patient care are more accurate and efficient. 

 
Table  5. Best hyperparameter values for mortality 
 

Algorithm Best Hyperparameter Value 

XGB 

n_estimator : 267 
max_depth : 12 
learning_rate : 0.82 
subsample : 0.92 
colsample_bytree : 0.92 
gamma : 0.28 
reg_alpha : 0.0 
reg_lambda : 0.0 

Extra Tree 

n_estimator : 392 
max_depth : 3 
min_samples_split : 0.74 
min_samples_leaf : 0.39 
max_features : 0.75 
min_weight_fraction_leaf : 0.33 
criterion : ‘entropy’ 

CatBoost 

max_depth : 10 
iterations : 446 
learning_rate : 0.04 
12_leaf_reg : 6.54 
Border_count : 21 

Decision Tree 

max_depth : 5 
min_samples_split : 0.7 
min_samples_leaf : 0.6 
max_features : 0.38 

Random Forest 

n_estimator : 91 
max_depth : 7 
min_samples_split : 0.57 
min_samples_leaf : 0.22 
max_features : 0.12 

 

The performance of the predictive mortality 
model of stroke patients experienced a significant 
improvement after hyperparameter settings. Table 7 
shows an improvement in the Extreme Gradient 
Boosting (XGB) model, which achieved high 
accuracy (86%) and good accuracy (91%) in 
identifying high-risk patients. The extra tree 
algorithm managed to recognize low-risk patients 
with an accuracy of 77%.  

 
The CatBoost model has comparable accuracy, 

although it has lower performance in identifying 
patients at high risk (recall 60%). However, the 
decision tree (DT) and random forest (RF) show 
lower performance.  

In addition, Figure 4 (mortality) shows a 
significant improvement in model performance after 
hyperparameter setting in mortality prediction. The 
XGBoost (XGB) model reached the highest ROC 
AUC of 0.87, showing excellent ability in predicting 
mortality. Models such as CatBoost and Extra Tree 
also experienced significant increases in the ROC 
AUC after setting. Hyperparameter settings help 
models give more accurate predictions about the 
duration of patient care, which is crucial in patient 
care management. 

 
Table 6. Algorithm performance for mortality after tuning 
 

 

 

Mortality 
(1) 

Healthy 
(0) Accuracy 

Pr
ec

isi
on

 

XGB 82 91 
XGB  
86 % Extra tree 86 73 

CatBoost 86 73 
DT 70 75 Extra 

Tree 
77 % 

RF 83 69 

R
ec

al
l 

XGB 90 83 

Extra tree 60 92 
CatBoost 

77 % CatBoost 60 92 
DT 70 50 
RF 50 92 

DT 
73 % 

F-
1s

co
re

 

XGB 86 87 
Extra tree 71 81 
CatBoost 71 81 

RF 
73 % DT 70 75 

RF 62 79 
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Figure 4. Tuned ROC curve for mortality prediction 

4.3. Feature Importance 
 

In this study, the Extreme Gradient Boosting 
Classifier (XGB) model showed excellent 
performance, especially after the hyperparameter 
setting, making it the algorithm with the highest 
accuracy in predicting mortality and duration of 
stroke patient care. To identify the features that most 
influence the risk of mortality and the duration of 
treatment, we implemented the feature importance 
approach using the best algorithm, XGBoost. This 
feature importance analysis allows measurement of 
the impact of each feature on the accuracy of the 
model. That is, the features that have a greater 
influence will have a higher level of importance in 
the prediction. 

The results of the analysis of feature importance 
in the case of the prediction of mortality can be seen 
in Figure 5.  

The sex of the patient became the most significant 
attribute, with a difference in the risk of death 
between men and women. Localization of strokes in 
the brain, especially in the middle brain and stem, 
also contributes to a higher risk of death due to the 
importance of these areas in controlling body 
functions. Previous stroke history and health factors 
such as HDL, LDL, hemoglobin, blood pressure, 
neutrophil-lymphocyte ratio (NLR), triglyceride 
(TG), and leukocyte count (LEU) also play an 
important role in predicting mortality. Low HDL 
levels, high LDL rates, low hemoglobin levels, and 
high blood pressure are significant risk factors. NLR 
and the number of leukocytes reflect the 
inflammatory response in the body, which also 
affects mortality risk. 
 

 
 

Figure 5. Mortality importance features 



 TEM Journal. Volume 13, Issue 1, pages 705-717, ISSN 2217-8309, DOI: 10.18421/TEM131-74, February 2024. 

TEM Journal – Volume 13 / Number  1 / 2024.                                                                                                                              715 

4.4. Website Application Forecast Death of Stroke 
Patient with XGBoost Algorithm 

 
To support the prediction of the mortality rate of 

stroke patients, a website-based application has been 
developed using the XGBoost algorithm as the best 
choice. The purpose of this application is to assist the 
medical team in their efforts to treat stroke patients 
so as to avoid death. Here is a brief description of the 
application used. 

The application was developed using the 
XGBoost algorithm to predict the mortality rate of 
stroke patients. A web-based interface built with 
flask as a framework enables the development and 
provision of an interface so that users can easily fill 
in patient data, including relevant demographic 
information and medical history. Next, the 
application will process the data sent by the user. The 
data will be channeled to a machine learning model 
that has been trained using the XGBoost algorithm. 
The model was trained with previous stroke patient 
data to understand patterns of death and identify risk 
factors. After receiving input from the user, the 
XGBoost model will analyze the attributes entered 
and predict the death of a stroke patient based on the 
data.  

 
 

The results of this prediction will then be sent 
back to the user via the web interface in the form of 
an output or report, which will provide information 
about the likelihood of the patient's death. 

Figure 6 shows a view of the stroke patient's data 
input form. Users will be asked to fill in 17 attributes 
that include information such as the patient's age, 
gender, history of cardiovascular disease, previous 
medical history, and other information. All the inputs 
required in the input page form are numerical data. 
Once all of these attributes have been filled in, the 
data will be taken by the application and processed 
through a machine learning model using the 
XGBoost algorithm. The prediction results, as shown 
in Figure 7, will be shown to users through the web 
application interface in the form of outputs. This 
output provides information about the probability of 
the patient's death.  

The application provides two important pieces of 
information: a patient diagnosed or potentially at 
high risk of death, represented by the number 1, and 
a patient who is potentially recovered, represented by 
the number 0. Thus, the application allows users to 
predict the death of a stroke patient based on the 
medical data that has been entered. This could 
enhance better clinical decision-making as well as 
provide more effective treatment for stroke patients 
at Banyumas Hospital. 

 

 

 
 

Figure 6. Input page 
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Figure 7. Result page 

 
5. Conclusion 

 
The study used machine learning (ML) algorithms 

to predict mortality in patients with infrared strokes. 
Of the five algorithms, the XGBoost model is the 
best for predicting death in stroke patients. In this 
study, after setting the hyperparameter, the Extreme 
Gradient Boosting (XGBuost) model has been able to 
forecast patient mortality with an accuracy of 86% 
and an AUC of 87. This achievement describes a 
significant improvement in the accuracy and 
predictive ability of the model after hyperparameter 
settings. In addition, the research has successfully 
built a website-based application for predicting 
stroke patients' deaths in Banyumas Hospital.  

This research has some limitations. First, the 
research was conducted on a relatively small data set 
of 106 patients. Secondly, the study was carried out 
in one hospital in Indonesia, which may limit the 
ability to generalize the findings to other populations. 
Third, it did not take into account the impact of other 
factors, such as socio-economic status and access to 
health services, on mortality rates. Future research 
must overcome the limitations of this research by 
using larger datasets from more diverse populations. 
Future research should also consider the impact of 
other factors, such as socio-economic status, access 
to health services, and death. 
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