
TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

616 TEM Journal – Volume 13 / Number 1 / 2024.

A Machine Learning Guided Path
for Optimal Literature Review

Denitsa Panova P

1

P

1
PShumen University "Bishop Konstantin of Preslav", Bulgaria

Abstract – This paper introduces a novel machine
learning framework to address the challenge of
optimizing literature research by identifying the
optimal path. To create dataset and ensure the
versatility of the solution for different applications, we
developed an online scraping tool designed to extract
articles from ResearchGate based on a specific search
query. The proposed machine learning model leverages
contextual embeddings and graph theory, translating
intricate scholarly work into informative steps for one
to go wider rather than deeper in their research. By
employing a Christofides approximation of the
Traveling Salesman Problem algorithm, our model
efficiently navigates through more than 1000 article
embeddings. We prove that the resulting path not only
accelerates the knowledge gaining process, but also
evidently diversifies the findings. Moreover, we
evaluated multiple PDF reader libraries to arrive at
the most suitable one for the purpose. This adaptability
allows the framework to be applied not only to scraped
articles, but also to those stored as PDF files, giving an
option for multiple data sources. In conclusion, this
paper presents a transformative approach for
literature research optimization, equipping researchers
with a potent tool to efficiently explore articles.

Keywords – Travelling salesmen problem, graph
theory, sentence transformers, web scraping, PDF
libraries.

DOI: 10.18421/TEM131-64
34TUhttps://doi.org/10.18421/TEM131-64

Corresponding author: Denitsa Panova,
Shumen University "Bishop Konstantin of Preslav",
Bulgaria.
Email: 34TUdenitsa.panova@gmail.comU34T

Received: 21 September 2023.
Revised: 04 January 2024.
Accepted: 15 January 2024.
Published: 27 February 2024.

© 2024 Denitsa Panova; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

The article is published with Open Access at
Uhttps://www.temjournal.com/U

1. Introduction

In the realm of scientific research, the
accumulation of knowledge is the cornerstone of
advancement. Literature review sections within
research papers serve as vital conduits for building
upon existing knowledge and fostering innovation.
However, with the exponential growth of published
articles, the process of comprehensive review from
an extensive body of literature in a fast manner has
become a daunting challenge.

This paper introduces a novel machine learning
framework designed to address this challenge by
appointing the optimal path for literature research. In
the context of this study, optimal path and extensive
research refer to set of articles which provide
different angles on the same generic topic, giving a
wide rather than deep knowledge. Our proposed
model leverages the power of natural language
processing, in particular neural network embeddings
and graph theory, to sift through vast volumes of
scholarly work, distilling their core contributions into
concise and informative map. By harnessing the
potential of the framework, scientists can
significantly enhance their ability to extract relevant
information swiftly, identify key trends, and
ultimately expedite the process of knowledge
assimilation.

In the subsequent sections, we delve into the
architecture, methodologies, and evaluation metrics
of our proposed model. Through comprehensive
experiments and comparisons with existing methods,
we showcase the model's effectiveness in accurately
providing guided path to inspect various domains.
Our findings not only underscore the efficiency of
our approach but also highlight its potential to
revolutionize the way researchers navigate the ever-
expanding landscape of scientific literature.

The rest of this paper is organized as follows:
Section 2 provides a summary of related work and
outlines the methodology and data used in the
proposed framework. Section 3 presents the results of
the experiments, followed by a comprehensive
analysis of the findings.

https://doi.org/10.18421/TEM131-64
mailto:denitsa.panova@gmail.com
https://www.temjournal.com/
https://doi.org/10.18421/TEM131-64

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 617

Finally, Section 4 concludes the paper with a
summary of contributions, implications, and potential

future directions in the domain of automating
literature research.

Figure 1. Framework overview

2. Methodology

To the knowledge of the authors of this research,
there is no published machine learning approach to
provide a guided path for literature research
optimization. An overview of the proposed
framework architecture is displayed in Figure 1. To
initiate any research endeavour, the first step is to
identify a reliable source. In our case, we have opted
for ResearchGate as our primary location for articles.
ResearchGate is a European commercial social
networking platform designed for scientists,
established in 2008 [1]. Since then, it has increased
its popularity. In 2016 it was the website with highest
number of active users from the academic world [9],
as many scholarly profiles as Google Scholar [26].
The platform has been chosen for its widespread
popularity, and we will not delve into an exhaustive
discussion of the websites' pros and cons.

2.1. Web Scarping

When scientists embark on their research

journey, the initial and instinctive step involves
entering a general query into the search bar. This
query serves as the starting point for assessing the
relevance of all articles by reviewing their abstracts.
The proposed framework aims to replicate this
human-like behaviour; therefore, a Python scraper is
developed, using selenium [2]. The code has the
following functionality:
1. Logs in to ResearchGate with credentials.
2. Searches a vague statement – ‘bee acoustic.’
3. Loops over the pages, downloads all the articles

and their abstracts.
4. Saves the file names.

It is important to be noted that if anyone wants to
recreate the procedure, it is required that some sleep
time between the download periods is added to avoid
being rate limited. We added a random number
between 30 and 60 seconds. The same waiting time is
advisable to be applied to the fourth step as well,
since process time is required for the browser to fully
download the PDF.

2.2. Sentence Transformer

To work programmatically with text, a

mathematical representation is necessary. There are
three primary types of embeddings – traditional (such
as Term Frequency - Inverse Document Frequency),
static (such as one-hot encoding), and contextualized
(such as Bidirectional Encoder Representations from
Transformers, BERT) [21]. Since the aim of this
paper is to find an optimal path for reading articles
based on their context, naturally we utilize the
contextualized embeddings. We chose to represent
the article abstracts using sentence transformers, state
of the art Python implementation of Siamese BERT-
Networks [13], [22]. The framework provides
pretrained models for general use which resonates to
the purposes of this research.

‘Huggingface’ is used as a library for pretrained
models. In particular ‘all-mpnet-base-v2’ instance is
chosen [3]. As per the benchmarks, it proves to
perform with best quality – transforms the text to
768-dimensional vector, even though it is not the
fastest option [10]. For the purposes of this research,
we prefer quality over speed. Additionally, it is the
model which considers the greatest number of words
before truncating the text – 384. To validate how
many of the abstracts fit that criterion, abstracts are
split into words, using the ‘nltk’ Python package
[14]. It is observed that 93% of the articles will not
be truncated. The rest are considered as outliers.
Figure 2 shows a histogram of the word count
distribution over the dataset.

Figure 2. Word count distribution over the dataset

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

618 TEM Journal – Volume 13 / Number 1 / 2024.

2.3. Similarity Metric

There are two metrics which are usually used for

comparing contextual embeddings – cosine similarity
and Pearson coefficients. Research has demonstrated
the equivalence of both metrics when applied to such
vectors [27]. Consequently, we opt to utilize cosine
similarity as the preferred comparison metric.

2.4. Social Network Analysis (Graph Theory)

The goal of the social network analysis is to

illustrate social interactions between different agents
(known as nodes) and thus reflect reality in a
mathematical manner. It is a standard practise to
represent text embeddings in a network [15]. To
construct a graph, one needs nodes (in this instance
the abstracts) and edges between them, the calculated
pairwise cosine similarity. By design, the resulting
graph is undirected; fully connected (every two
nodes have an edge); signed and weighted, since the
edges have value between (-1;1); and homogeneous,
since all nodes have the same function. As Python
implementation, we will use the ‘networkx’ package
[12].

2.5. Travelling Salesmen Problem (TSP)

The travelling salesmen problem is a well-known

optimization problem. In its essence, it tries to
answer the following question – “If one has a list of
cities and the distance between each pair of cities,
what is the shortest route to visit each city?” For the
first time the problem has been mentioned in a
handbook for travelling salesmen from 1832, from
where the naming convention arises [23].

TSP is a NP-hard problem and does not have a
polynomial-time algorithm to find optimal solution.
There are different solutions for approximating the
solution. This paper utilizes the Christofides
algorithm, which in its essence uses the minimum
spanning tree notion [5], [20]. The approximation
ensures the solution will be a factor of 3/2 of the
optimal path length. The method has been developed
in 1976 and it is one of the base algorithms for
solving the challenge [8]. We deliberately employed
it to demonstrate that even with a standard algorithm,
the framework would showcase its utility.

2.6. Evaluation Metric

The goal of the paper is to demonstrate

employment of the proposed framework that will
yield a more effective path—one that includes a
greater diversity of articles, facilitating
comprehensive literature research. Furthermore, the
aim of the social network analysis is to simulate real-
world conditions.

In typical research practices, scientists often
cycle through a restricted number of result pages,
let's assume 50 articles this case. The evaluation
metric introduced in this paper is visually described
in Figure 3. We will compare the average similarity
of articles within the first 50 articles of results
obtained originally from ResearchGate and the
proposed TSP path.

Figure 3. Evaluation metric design

Additionally, we introduce a loss metric. If
researchers choose to follow the article order
suggested by ResearchGate, it will require a certain
amount of reading time to reach the articles
recommended by TSP. The reading rate for studying
is from 100 to 200 words per minute depending on
the different sources [28], [17]. For the purposes of
this research, we will assume 150 words per minute.
In its essence, the “loss” metric is the number of
extra articles a researcher should read if following
the ResearchGate path, to cover the first 50 articles
recommended by TSP. For instance, if the first article
in the TSP sequence is the 100th in the original
ResearchGate order, the reader would have to peruse
99 articles before reaching the suggested one. In our
calculation, we will exclude articles that are already
part of the TSP-recommended path. Building on the
previous example, if article 50 is already in the
suggested path, it will not be factored into the loss
function because the reader would need to read it
anyway. Once we have identified the "loss" articles,
we will proceed to compute the word count and the
time lost. The loss function will be applied to the
initial 50 articles as well.

2.7. PDF Libraries

As a final step of the research, we evaluate

various Python packages for processing PDF
documents. The objective is to ensure that the
framework remains applicable even when the source
of information consists of saved PDF documents,
which is a prevalent method for archiving articles.
From our web scraping efforts, we have access to
both the abstract and the stored PDF files. However,
it is worth noting that converting PDF files to text is
a non-trivial task.

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 619

There are numerous Python packages available
for this purpose, and we will assess their
effectiveness based on several metrics:

1) Keyword search misses - inability to find
text between keywords “abstract” and
“introduction.”

2) Time - Time required to process the PDF
files.

3) Average similarity - average Levenshtein
distance between the scraped and the PDF-
extracted abstracts, using the ‘thefuzz’
Python package [24], [11].

In this study, we will assess the performance of five
packages that were newly updated this year (‘pypdf’,
‘pypdfium2’, ‘borb’, ‘pdfnet’, and ‘tika’) alongside
one package released in 2017, which is ‘fitz’ [6],
[16], [19], [3], [4], [18], [25]. Furthermore, it is
worth noting that one of these packages, ‘pdfnet’, is a
paid solution.

It is essential to emphasize that our objective is
to offer a comparison of the effectiveness of these
packages rather than delving deeply into the reasons
for their performance.

3. Results

The scraper code was executed twice, first in

May and then in August 2023. ResearchGate's
website typically provides a maximum of 1000
results for each query. After these two scraping
sessions, we accumulated a total of 1472 articles.
Subsequently, a manual inspection of the
downloaded files revealed that only three had not
been downloaded correctly, and we intervened
manually to rectify this issue. This translates to an
impressive success rate of approximately 99.8%.
Additional 45 results do not have saved file since it is
not available on the website, which we exclude from
the results.

Figure 4. Data in ResearchGate and Python

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

620 TEM Journal – Volume 13 / Number 1 / 2024.

It is crucial to highlight why we store the file
names. There are no standardized naming
conventions for these files, resulting in situations
where the title can be quite lengthy, like "Seasonal
Dynamics of the Honey Bee Gut Microbiota in
Colonies Under Subtropical Climate: Seasonal
Dynamics of Honey Bee Gut Microbiota," while the
file name may be something like
‘Castelli2021_Article_SeasonalDynamicsOfTheHon
eyBeeG.pdf.’ This meticulous step is vital for our
research, ensuring that we can confidently match
each file with its corresponding abstract and
accurately compare the PDF readers.

As part of this process, we also make cosmetic
adjustments, extracting the file type (e.g., ‘Article’,
‘Proceeding’ etc.). Additionally, we convert the date
column into a datetime dimension and break down
the year. Furthermore, we create tag columns based
on the footer information to discern which results
contain recommendations, reads, and citations. Given
that the dataset includes information from two
separate scraping sessions. There is a need to address
the presence of duplicate entries for the result
positions. In cases where duplications occur, we
prioritize the most recently published article,
considering it as the primary entry. It is worth noting
that most of the scraped results pertain to articles
published after 2022. Figure 4 shows how the data
looks on the website and, in the ‘pandas’ data frame
used for visualization.

We compute the pairwise similarity between the
1425 abstracts. Figure 5 shows its distribution. As
expected, they are similar to some extent, proven by
the lack of extreme negative values in the cosine
similarity.

Figure 5. Pairwise Similarity

A graph is constructed, and the Traveling
Salesman Problem (TSP) algorithm is applied to it,
resulting in an execution time of 1,506 seconds,
executed on a computer, equipped with a 11th Gen
Intel(R) Core(TM) i7-11850H running at 2.50GHz
and 32.0GB of system memory.

When examining the first 50 results of the
generated path, the average similarity score is found
to be 0.15, while for the ResearchGate articles, it is
0.49. This strongly suggests that the proposed
algorithm has successfully diversified the results,
making the suggested path more optimal for
conducting comprehensive literature research.
Recognizing that the average metric can be
deceptive, we turn our attention to the distribution of
results displayed in the histogram. It becomes evident
from the histogram (Figure 6) that a significant
majority of the results lack similarity.

When quantifying the “loss” articles, they
constitute 672 results. This translates to 178,515
words, or a time investment of approximately 1190
minutes, which is equivalent to about 20 hours of
consecutive reading required to attain a comparable
range of knowledge diversity.

Figure 6. Pairwise similarity for comparison

The final phase of our research involves
identifying the most suitable PDF reader. Table 1
presents a summary of the evaluation criteria results.
We would recommend ‘pypdfium2’ as the optimal
choice. This recommendation is based on several
factors: it demonstrates one of the highest accuracy
levels, boasts a relatively low execution time, records
the lowest number of missing keyword texts, and has
received the most recent updates.

Interestingly, ‘pdfnet’ does exhibit a notable
quantity of missing data, considering it is paid tool,
but an examination of the similarity distribution
reveals that the majority of abstracts have a similarity
score of 80% or higher. Despite being considered a
state-of-the-art PDF reader, ‘tika’'s performance is
heavily influenced by PDF formatting and does not
align well with the keyword search evaluation
method.

Another state-of-the-art package, ‘borb’, while
capable, suffers from slow execution times. It is
worth noting that the reported results are based on a
sample of only 20 articles, and the execution time is
not practical for handling a large volume of files.

Path Histogram

ResearchGate
Histogram

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 621

Table 1. Package comparison

Package Updated
date

Time
(sec.)

Key-word
Misses

AVG
similarity

Pypdf Aug 2023 1387 640 84.24
Fitz Feb 2017 80 659 84.47
Pypdfium2 Jul 2023 91 606 85.96
Pdfnet May

2023
219 1066 80.97

Tika Jan 2023 263 1425 0
Borb* Jul 2023 448 5 77.26
*Calculated only for 20 files

4. Discussion

In this rapidly evolving era of scientific research,
where the volume of published articles continues to
grow exponentially, the task of efficiently navigating
the vast sea of knowledge has become a formidable
challenge. As we introduced in the preceding
sections, literature review plays a pivotal role in
advancing research, acting as a bridge between
existing knowledge and novel discoveries. However,
the sheer magnitude of available literature can be
overwhelming, often hindering the pace of
innovation.

Our paper has presented a novel machine
learning framework that seeks to address this
challenge by providing researchers with an optimized
path for literature exploration. In the context of this
study, an "optimal path" refers to a curated set of
articles that offer diverse perspectives on a given
topic, facilitating a broad understanding rather than a
deep dive into a specific area. This framework
harnesses the power of natural language processing,
specifically transformer models, and incorporates
principles from graph theory to distil the essence of
extensive scholarly work into a concise and
informative map. By leveraging this framework,
scientists can significantly expedite their ability to
access pertinent information, identify emerging
trends, and streamline the knowledge assimilation
process.

We have proven that using the proposed
methodology will significantly increase the
diversification of the set of articles compared to the
original order provided by the search engine. The
average cosine similarity drops from 0.49 to 0.15.
Additionally, we have shown the amount of time a
researcher will save to arrive at the same
comprehensive articles – 20 hours reading time.

The innovation highlighted in this paper lies in
the framework itself and its practical application
within the realm of optimizing literature reviews. It
represents a comprehensive solution that researchers
can directly utilize, whether by sourcing their
information from ResearchGate or a collection of
PDF articles.

Our comprehensive experiments and
comparisons with existing methods have
demonstrated the effectiveness of our model in
providing accurate guidance for exploring various
domains of scientific literature. These findings
underscore not only the efficiency of our approach
but also its potential to revolutionize the way
researchers navigate the ever-expanding landscape of
scholarly publications. As the research advances, one
avenue for enhancing the model could involve
exploring various TSP algorithms to optimize and
expedite the resolution time. Additionally, an
improvement could entail incorporating cluster
creation based on title embeddings, the number of
reads, recommendations, and citations. These
resultant clusters could then be leveraged to apply
TSP between them, complementing the existing
solution. This approach would not only offer an
optimal path but also enable the suggestion of similar
articles if a particular article is deemed "relevant."

5. Conclusion

The framework introduced in the paper is designed

to address the challenge of finding the optimal path
for literature research. The focus is on breadth, rather
than depth, of knowledge which allows researchers to
gain a comprehensive understanding of their chosen
topics swiftly.

The proposed solution harnesses the power of
contextual embeddings and graph theory, enabling us
to translate complex scholarly work into informative
maps. With an impressive success rate of
approximately 99.8% in data acquisition (mapping
scraped articles to files), we ensured the quality and
reliability of our test dataset.

Through a Christofides approximation of the
Traveling Salesman Problem (TSP) algorithm, our
framework efficiently navigates through the 1425
abstracts in reasonable time. The resulting path not
only enhances the speed of knowledge assimilation
(20 hours of continuous reading time saved) but also
diversifies results, as reflected in the average cosine
similarity scores and the histogram distribution.

Furthermore, our evaluation of PDF readers has
identified ‘pypdfium2’ as the optimal choice, based
on factors such as accuracy, execution time, and the
finding text based on key words. While other
packages like ‘pdfnet’, ‘tika’, and ‘borb’ offer unique
features, they come with certain limitations that may
affect their suitability for comprehensive literature
research using the proposed framework. In this way
the solution can be applied not only to articles which
are scraped but also stored as pdf files with a high
degree of accuracy.

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

622 TEM Journal – Volume 13 / Number 1 / 2024.

In conclusion, this paper presents a transformative
approach to literature research optimization, offering
researchers a powerful tool to navigate the ever-
expanding scientific literature efficiently. With a
strong foundation in data acquisition, preprocessing,
and analysis, our framework holds the promise of
revolutionizing the way researchers explore and
synthesize knowledge in the digital age.

References:

[1]. ResearchGate (n.d.). ResearchGate search.
ResearchGate. Retrieved from:
https://www.researchgate.net/
[accessed: 29 August 2023].

[2]. The Python Package Index (n.d.). Selenium
4.16.0. PyPI. Retrieved from:
https://pypi.org/project/selenium/
[accessed: 30 August 2023].

[3]. Huggingface (n.d.). all-mpnet-base-v2.
Huggingface. Retrieved from:
https://huggingface.co/sentence-transformers/all-
mpnet-base-v2 [accessed: 30 August 2023].

[4]. Jorisschellekens. (n.d.). GitHub -
jorisschellekens/borb. Git Hub. Retrieved from:
https://github.com/jorisschellekens/borb
[accessed: 02 September 2023].

[5]. Christofides, N. (1976). Worst-case analysis of a
new heuristic for the travelling salesman
problem. Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group.

[6]. PyMuPdf. (n.d.). Module Fitz. PyMuPdf
Retrieved from:
https://pymupdf.readthedocs.io/en/latest/module.
html [accessed: 03 September 2023].

[7]. GetRepo. (n.d.). Retrieved from:
https://github.com/dpanova/A-Machine-
Learning-Guided-Path-for-Optimal-Lit-Review
[accessed: 02 September 2023].

[8]. Karlin, A. R., Klein, N., & Gharan, S. O. (2021).
A (slightly) improved approximation algorithm
for metric TSP. the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. New York.

[9]. Matthews, D. (n.d.). Do academic social
networks share academics’ interests? Times
Higher Education. Retrieved from:
https://www.timeshighereducation.com/features/
do-academic-social-networks-share-academics-
interests [accessed: 03 September 2023].

[10]. Sbert. (n.d.). Model Overview. Sbert. Retrieved
from:https://www.sbert.net/docs/pretrained_mod
els.html [accessed: 04 September 2023].

[11]. Navarro, G. (2001). A Guided Tour to
Approximate String Matching. ACM Computing
Surveys, 33(1). Doi:10.1145/375360.375365

[12]. Networkx. (n.d.). NetworkX documentation.
Netvorkx. Retrieved from: https://networkx.org/
[accessed: 05 September 2023].

[13]. Nils Reimers, I. G. (2019). Sentence-BERT:
Sentence Embeddings using Siamese BERT-
Networks. EMNLP.
Doi: 10.48550/arXiv.1908.10084

[14]. NLTK. (n.d.). Natural Language Toolkit. NLTK.
Retrieved from: https://www.nltk.org/
[accessed: 06 September 2023].

[15]. Paul Compagnon, K. O. (2017). Graph
Embeddings for Social Network Analysis: State
of the Art. Institut National Des Sciences
Appliquees Lyon.

[16]. pdfnet. (n.d.). Custom Python Wrapper PDF
Library for Windows | Apryse SDK. docs.apryse
Retrieved from:
https://docs.apryse.com/documentation/python/g
et-started/python3/windows/
[accessed: 08 September 2023].

[17]. Primativo, S., Spinelli, D., Zoccolotti, P., De
Luca, M., & Martelli, M. (2016). Perceptual and
cognitive factors imposing “speed limits” on
reading rate: a study with the rapid serial visual
presentation. PloS one, 11(4), e0153786.
Doi:10.1371/journal.pone.0153786

[18]. PyPDF. (n.d.). Welcome to PyPDF2 —
PyPDF2 documentation. PyPDF.
Retrieved from:
https://pypdf2.readthedocs.io/en/3.0.0/
[accessed: 10 September 2023].

[19]. Pypdfium2. (n.d.). pypdfium2 —
pypdfium2 documentation. Pypdfium2.
Retrieved from:
https://pypdfium2.readthedocs.io/en/stable/
[accessed: 10 September 2023].

[20]. van Bevern, R., & Slugina, V. A. (2020). A
historical note on the 3/2-approximation
algorithm for the metric traveling salesman
problem. Historia Mathematica, 53, 118-127.

[21]. Selva Birunda, S., & Kanniga Devi, R. (2021).
A review on word embedding techniques for text
classification. Innovative Data Communication
Technologies and Application: Proceedings of
ICIDCA 2020, 267-281.

[22]. SentenceTransformers Documentation. (n.d.).
SentenceTransformers Documentation —
Sentence-Transformers documentation.Sbert.net.
Retrieved from: https://www.sbert.net/
[accessed: 11 September 2023].

[23]. Voigt B. F. (1832) The traveling salesman as he
should be and what he has to do in order to
receive orders and to be certain of successful
success in his business. Jenaische Allgemeine
Literaturzeitung.
Retrieved from:
https://zs.thulb.uni-
jena.de/receive/jportal_jparticle_00248075
[accessed: 13 September 2023].

https://www.researchgate.net/
https://pypi.org/project/selenium/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/jorisschellekens/borb
https://pymupdf.readthedocs.io/en/latest/module.html
https://pymupdf.readthedocs.io/en/latest/module.html
https://github.com/dpanova/A-Machine-Learning-Guided-Path-for-Optimal-Lit-Review
https://github.com/dpanova/A-Machine-Learning-Guided-Path-for-Optimal-Lit-Review
https://www.timeshighereducation.com/features/do-academic-social-networks-share-academics-interests
https://www.timeshighereducation.com/features/do-academic-social-networks-share-academics-interests
https://www.timeshighereducation.com/features/do-academic-social-networks-share-academics-interests
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://networkx.org/
https://www.nltk.org/
https://docs.apryse.com/documentation/python/get-started/python3/windows/
https://docs.apryse.com/documentation/python/get-started/python3/windows/
https://pypdf2.readthedocs.io/en/3.0.0/
https://pypdfium2.readthedocs.io/en/stable/
https://www.sbert.net/
https://zs.thulb.uni-jena.de/receive/jportal_jparticle_00248075
https://zs.thulb.uni-jena.de/receive/jportal_jparticle_00248075

TEM Journal. Volume 13, Issue 1, pages 616-623, ISSN 2217-8309, DOI: 10.18421/TEM131-64, February 2024.

TEM Journal – Volume 13 / Number 1 / 2024. 623

[24]. Seatgeek. (n.d.). GitHub - seatgeek/thefuzz:
Fuzzy String Matching in Python. Github.
Retrieved from:
https://github.com/seatgeek/thefuzz
[accessed: 14 September 2023].

[25]. Chrismattmann. (n.d.). GitHub -
chrismattmann/tika-python: Tika-Python is a
Python binding to the Apache Tika™ REST
services allowing Tika to be called natively in the
Python community. Github.
Retrieved from:
https://github.com/chrismattmann/tika-python
[accessed: 14 September 2023].

[26]. Utrecht, U. (2016). Innovations in Scholarly
Communication. Web.archive. Retrieved from:
https://web.archive.org/web/20161209150914/htt
ps://101innovations.wordpress.com/
[accessed: 16 September 2023].

[27]. Zhelezniak, V., Savkov, A., Shen, A., &
Hammerla, N. Y. (2019). Correlation coefficients
and semantic textual similarity. arXiv preprint
arXiv:1905.07790.

[28]. Curcic, D. (n.d.). Reading Speed Statistics
–. WordsRated. Retrieved from:
https://wordsrated.com/reading-speed-
statistics/#:~:text=The%20average%20oral%20r
eading%20speed,learning%20is%20100%2D200
%20wpm. [accessed: 19 September 2023].

https://github.com/seatgeek/thefuzz
https://github.com/chrismattmann/tika-python
https://web.archive.org/web/20161209150914/https:/101innovations.wordpress.com/
https://web.archive.org/web/20161209150914/https:/101innovations.wordpress.com/
https://wordsrated.com/reading-speed-statistics/%23:%7E:text=The%20average%20oral%20r%20eading%20speed,learning%20is%20100-200%20wpm
https://wordsrated.com/reading-speed-statistics/%23:%7E:text=The%20average%20oral%20r%20eading%20speed,learning%20is%20100-200%20wpm
https://wordsrated.com/reading-speed-statistics/%23:%7E:text=The%20average%20oral%20r%20eading%20speed,learning%20is%20100-200%20wpm
https://wordsrated.com/reading-speed-statistics/%23:%7E:text=The%20average%20oral%20r%20eading%20speed,learning%20is%20100-200%20wpm

