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Abstract – This paper introduces a novel machine 
learning framework to address the challenge of 
optimizing literature research by identifying the 
optimal path. To create dataset and ensure the 
versatility of the solution for different applications, we 
developed an online scraping tool designed to extract 
articles from ResearchGate based on a specific search 
query. The proposed machine learning model leverages 
contextual embeddings and graph theory, translating 
intricate scholarly work into informative steps for one 
to go wider rather than deeper in their research. By 
employing a Christofides approximation of the 
Traveling Salesman Problem algorithm, our model 
efficiently navigates through more than 1000 article 
embeddings. We prove that the resulting path not only 
accelerates the knowledge gaining process, but also 
evidently diversifies the findings. Moreover, we 
evaluated multiple PDF reader libraries to arrive at 
the most suitable one for the purpose. This adaptability 
allows the framework to be applied not only to scraped 
articles, but also to those stored as PDF files, giving an 
option for multiple data sources. In conclusion, this 
paper presents a transformative approach for 
literature research optimization, equipping researchers 
with a potent tool to efficiently explore articles.   
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1. Introduction

In the realm of scientific research, the 
accumulation of knowledge is the cornerstone of 
advancement. Literature review sections within 
research papers serve as vital conduits for building 
upon existing knowledge and fostering innovation. 
However, with the exponential growth of published 
articles, the process of comprehensive review from 
an extensive body of literature in a fast manner has 
become a daunting challenge. 

This paper introduces a novel machine learning 
framework designed to address this challenge by 
appointing the optimal path for literature research. In 
the context of this study, optimal path and extensive 
research refer to set of articles which provide 
different angles on the same generic topic, giving a 
wide rather than deep knowledge. Our proposed 
model leverages the power of natural language 
processing, in particular neural network embeddings 
and graph theory, to sift through vast volumes of 
scholarly work, distilling their core contributions into 
concise and informative map. By harnessing the 
potential of the framework, scientists can 
significantly enhance their ability to extract relevant 
information swiftly, identify key trends, and 
ultimately expedite the process of knowledge 
assimilation. 

In the subsequent sections, we delve into the 
architecture, methodologies, and evaluation metrics 
of our proposed model. Through comprehensive 
experiments and comparisons with existing methods, 
we showcase the model's effectiveness in accurately 
providing guided path to inspect various domains. 
Our findings not only underscore the efficiency of 
our approach but also highlight its potential to 
revolutionize the way researchers navigate the ever-
expanding landscape of scientific literature.  

The rest of this paper is organized as follows: 
Section 2 provides a summary of related work and 
outlines the methodology and data used in the 
proposed framework. Section 3 presents the results of 
the experiments, followed by a comprehensive 
analysis of the findings.  
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Finally, Section 4 concludes the paper with a 
summary of contributions, implications, and potential 

future directions in the domain of automating 
literature research. 

 

 
Figure 1. Framework overview 

2. Methodology  
 

To the knowledge of the authors of this research, 
there is no published machine learning approach to 
provide a guided path for literature research 
optimization. An overview of the proposed 
framework architecture is displayed in Figure 1. To 
initiate any research endeavour, the first step is to 
identify a reliable source. In our case, we have opted 
for ResearchGate as our primary location for articles. 
ResearchGate is a European commercial social 
networking platform designed for scientists, 
established in 2008 [1]. Since then, it has increased 
its popularity. In 2016 it was the website with highest 
number of active users from the academic world [9], 
as many scholarly profiles as Google Scholar [26]. 
The platform has been chosen for its widespread 
popularity, and we will not delve into an exhaustive 
discussion of the websites' pros and cons. 
 
2.1. Web Scarping  

 
When scientists embark on their research 

journey, the initial and instinctive step involves 
entering a general query into the search bar. This 
query serves as the starting point for assessing the 
relevance of all articles by reviewing their abstracts. 
The proposed framework aims to replicate this 
human-like behaviour; therefore, a Python scraper is 
developed, using selenium [2]. The code has the 
following functionality: 
1. Logs in to ResearchGate with credentials. 
2. Searches a vague statement – ‘bee acoustic.’ 
3. Loops over the pages, downloads all the articles 

and their abstracts. 
4. Saves the file names. 

It is important to be noted that if anyone wants to 
recreate the procedure, it is required that some sleep 
time between the download periods is added to avoid 
being rate limited. We added a random number 
between 30 and 60 seconds. The same waiting time is 
advisable to be applied to the fourth step as well, 
since process time is required for the browser to fully 
download the PDF. 
 
 
 

 
2.2. Sentence Transformer 

 
To work programmatically with text, a 

mathematical representation is necessary. There are 
three primary types of embeddings – traditional (such 
as Term Frequency - Inverse Document Frequency), 
static (such as one-hot encoding), and contextualized 
(such as Bidirectional Encoder Representations from 
Transformers, BERT) [21]. Since the aim of this 
paper is to find an optimal path for reading articles 
based on their context, naturally we utilize the 
contextualized embeddings. We chose to represent 
the article abstracts using sentence transformers, state 
of the art Python implementation of Siamese BERT-
Networks [13], [22]. The framework provides 
pretrained models for general use which resonates to 
the purposes of this research.  

‘Huggingface’ is used as a library for pretrained 
models. In particular ‘all-mpnet-base-v2’ instance is 
chosen [3]. As per the benchmarks, it proves to 
perform with best quality – transforms the text to 
768-dimensional vector, even though it is not the 
fastest option [10]. For the purposes of this research, 
we prefer quality over speed. Additionally, it is the 
model which considers the greatest number of words 
before truncating the text – 384. To validate how 
many of the abstracts fit that criterion, abstracts are 
split into words, using the ‘nltk’ Python package 
[14]. It is observed that 93% of the articles will not 
be truncated. The rest are considered as outliers. 
Figure 2 shows a histogram of the word count 
distribution over the dataset. 
 

 
 

Figure 2. Word count distribution over the dataset 
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2.3.     Similarity Metric 
 
There are two metrics which are usually used for 

comparing contextual embeddings – cosine similarity 
and Pearson coefficients. Research has demonstrated 
the equivalence of both metrics when applied to such 
vectors [27]. Consequently, we opt to utilize cosine 
similarity as the preferred comparison metric. 
 
2.4.    Social Network Analysis (Graph Theory) 

 
The goal of the social network analysis is to 

illustrate social interactions between different agents 
(known as nodes) and thus reflect reality in a 
mathematical manner. It is a standard practise to 
represent text embeddings in a network [15]. To 
construct a graph, one needs nodes (in this instance 
the abstracts) and edges between them, the calculated 
pairwise cosine similarity. By design, the resulting 
graph is undirected; fully connected (every two 
nodes have an edge); signed and weighted, since the 
edges have value between (-1;1); and homogeneous, 
since all nodes have the same function. As Python 
implementation, we will use the ‘networkx’ package 
[12]. 
 
2.5.     Travelling Salesmen Problem (TSP) 

 
The travelling salesmen problem is a well-known 

optimization problem. In its essence, it tries to 
answer the following question – “If one has a list of 
cities and the distance between each pair of cities, 
what is the shortest route to visit each city?” For the 
first time the problem has been mentioned in a 
handbook for travelling salesmen from 1832, from 
where the naming convention arises [23]. 

TSP is a NP-hard problem and does not have a 
polynomial-time algorithm to find optimal solution. 
There are different solutions for approximating the 
solution. This paper utilizes the Christofides 
algorithm, which in its essence uses the minimum 
spanning tree notion [5], [20]. The approximation 
ensures the solution will be a factor of 3/2 of the 
optimal path length. The method has been developed 
in 1976 and it is one of the base algorithms for 
solving the challenge [8]. We deliberately employed 
it to demonstrate that even with a standard algorithm, 
the framework would showcase its utility. 
 
2.6.     Evaluation Metric  

 
The goal of the paper is to demonstrate 

employment of the proposed framework that will 
yield a more effective path—one that includes a 
greater diversity of articles, facilitating 
comprehensive literature research. Furthermore, the 
aim of the social network analysis is to simulate real-
world conditions.  

In typical research practices, scientists often 
cycle through a restricted number of result pages, 
let's assume 50 articles this case. The evaluation 
metric introduced in this paper is visually described 
in Figure 3. We will compare the average similarity 
of articles within the first 50 articles of results 
obtained originally from ResearchGate and the 
proposed TSP path.  
 

 
 

Figure 3. Evaluation metric design 
 

Additionally, we introduce a loss metric. If 
researchers choose to follow the article order 
suggested by ResearchGate, it will require a certain 
amount of reading time to reach the articles 
recommended by TSP. The reading rate for studying 
is from 100 to 200 words per minute depending on 
the different sources [28], [17]. For the purposes of 
this research, we will assume 150 words per minute.  
In its essence, the “loss” metric is the number of 
extra articles a researcher should read if following 
the ResearchGate path, to cover the first 50 articles 
recommended by TSP. For instance, if the first article 
in the TSP sequence is the 100th in the original 
ResearchGate order, the reader would have to peruse 
99 articles before reaching the suggested one. In our 
calculation, we will exclude articles that are already 
part of the TSP-recommended path. Building on the 
previous example, if article 50 is already in the 
suggested path, it will not be factored into the loss 
function because the reader would need to read it 
anyway. Once we have identified the "loss" articles, 
we will proceed to compute the word count and the 
time lost. The loss function will be applied to the 
initial 50 articles as well. 
 
2.7.     PDF Libraries 

 
As a final step of the research, we evaluate 

various Python packages for processing PDF 
documents. The objective is to ensure that the 
framework remains applicable even when the source 
of information consists of saved PDF documents, 
which is a prevalent method for archiving articles. 
From our web scraping efforts, we have access to 
both the abstract and the stored PDF files. However, 
it is worth noting that converting PDF files to text is 
a non-trivial task.  
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There are numerous Python packages available 
for this purpose, and we will assess their 
effectiveness based on several metrics:  

1) Keyword search misses - inability to find 
text between keywords “abstract” and 
“introduction.”  

2) Time - Time required to process the PDF 
files. 

3) Average similarity - average Levenshtein 
distance between the scraped and the PDF-
extracted abstracts, using the ‘thefuzz’ 
Python package [24], [11].   

In this study, we will assess the performance of five 
packages that were newly updated this year (‘pypdf’, 
‘pypdfium2’, ‘borb’, ‘pdfnet’, and ‘tika’) alongside 
one package released in 2017, which is ‘fitz’ [6], 
[16], [19], [3], [4], [18], [25]. Furthermore, it is 
worth noting that one of these packages, ‘pdfnet’, is a 
paid solution.  
 

It is essential to emphasize that our objective is 
to offer a comparison of the effectiveness of these 
packages rather than delving deeply into the reasons 
for their performance. 
 
3. Results 

 
The scraper code was executed twice, first in 

May and then in August 2023. ResearchGate's 
website typically provides a maximum of 1000 
results for each query. After these two scraping 
sessions, we accumulated a total of 1472 articles. 
Subsequently, a manual inspection of the 
downloaded files revealed that only three had not 
been downloaded correctly, and we intervened 
manually to rectify this issue. This translates to an 
impressive success rate of approximately 99.8%. 
Additional 45 results do not have saved file since it is 
not available on the website, which we exclude from 
the results. 

 
 

 
 

Figure 4. Data in ResearchGate and Python 
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It is crucial to highlight why we store the file 
names. There are no standardized naming 
conventions for these files, resulting in situations 
where the title can be quite lengthy, like "Seasonal 
Dynamics of the Honey Bee Gut Microbiota in 
Colonies Under Subtropical Climate: Seasonal 
Dynamics of Honey Bee Gut Microbiota," while the 
file name may be something like 
‘Castelli2021_Article_SeasonalDynamicsOfTheHon
eyBeeG.pdf.’ This meticulous step is vital for our 
research, ensuring that we can confidently match 
each file with its corresponding abstract and 
accurately compare the PDF readers. 

As part of this process, we also make cosmetic 
adjustments, extracting the file type (e.g., ‘Article’, 
‘Proceeding’ etc.). Additionally, we convert the date 
column into a datetime dimension and break down 
the year. Furthermore, we create tag columns based 
on the footer information to discern which results 
contain recommendations, reads, and citations. Given 
that the dataset includes information from two 
separate scraping sessions. There is a need to address 
the presence of duplicate entries for the result 
positions. In cases where duplications occur, we 
prioritize the most recently published article, 
considering it as the primary entry. It is worth noting 
that most of the scraped results pertain to articles 
published after 2022. Figure 4 shows how the data 
looks on the website and, in the ‘pandas’ data frame 
used for visualization. 

We compute the pairwise similarity between the 
1425 abstracts. Figure 5 shows its distribution. As 
expected, they are similar to some extent, proven by 
the lack of extreme negative values in the cosine 
similarity.  
 

 
 

Figure 5. Pairwise Similarity 
 

A graph is constructed, and the Traveling 
Salesman Problem (TSP) algorithm is applied to it, 
resulting in an execution time of 1,506 seconds, 
executed on a computer, equipped with a 11th Gen 
Intel(R) Core(TM) i7-11850H running at 2.50GHz 
and 32.0GB of system memory.  

When examining the first 50 results of the 
generated path, the average similarity score is found 
to be 0.15, while for the ResearchGate articles, it is 
0.49. This strongly suggests that the proposed 
algorithm has successfully diversified the results, 
making the suggested path more optimal for 
conducting comprehensive literature research. 
Recognizing that the average metric can be 
deceptive, we turn our attention to the distribution of 
results displayed in the histogram. It becomes evident 
from the histogram (Figure 6) that a significant 
majority of the results lack similarity.  

When quantifying the “loss” articles, they 
constitute 672 results. This translates to 178,515 
words, or a time investment of approximately 1190 
minutes, which is equivalent to about 20 hours of 
consecutive reading required to attain a comparable 
range of knowledge diversity. 

 
 

 
 

Figure 6. Pairwise similarity for comparison 
  

The final phase of our research involves 
identifying the most suitable PDF reader. Table 1 
presents a summary of the evaluation criteria results. 
We would recommend ‘pypdfium2’ as the optimal 
choice. This recommendation is based on several 
factors: it demonstrates one of the highest accuracy 
levels, boasts a relatively low execution time, records 
the lowest number of missing keyword texts, and has 
received the most recent updates. 

Interestingly, ‘pdfnet’ does exhibit a notable 
quantity of missing data, considering it is paid tool, 
but an examination of the similarity distribution 
reveals that the majority of abstracts have a similarity 
score of 80% or higher. Despite being considered a 
state-of-the-art PDF reader, ‘tika’'s performance is 
heavily influenced by PDF formatting and does not 
align well with the keyword search evaluation 
method. 

Another state-of-the-art package, ‘borb’, while 
capable, suffers from slow execution times. It is 
worth noting that the reported results are based on a 
sample of only 20 articles, and the execution time is 
not practical for handling a large volume of files. 
 
 

Path Histogram 

 

 

ResearchGate 
Histogram 
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Table 1.  Package comparison 
 

Package Updated 
date 

Time 
(sec.) 

Key-word 
Misses  

AVG 
similarity 

Pypdf Aug 2023 1387 640 84.24 
Fitz Feb 2017 80 659 84.47 
Pypdfium2 Jul 2023 91 606 85.96 
Pdfnet May 

2023 
219 1066 80.97 

Tika  Jan 2023 263 1425 0 
Borb* Jul 2023 448 5  77.26 
*Calculated only for 20 files 

 

4. Discussion 
 

In this rapidly evolving era of scientific research, 
where the volume of published articles continues to 
grow exponentially, the task of efficiently navigating 
the vast sea of knowledge has become a formidable 
challenge. As we introduced in the preceding 
sections, literature review plays a pivotal role in 
advancing research, acting as a bridge between 
existing knowledge and novel discoveries. However, 
the sheer magnitude of available literature can be 
overwhelming, often hindering the pace of 
innovation. 

Our paper has presented a novel machine 
learning framework that seeks to address this 
challenge by providing researchers with an optimized 
path for literature exploration. In the context of this 
study, an "optimal path" refers to a curated set of 
articles that offer diverse perspectives on a given 
topic, facilitating a broad understanding rather than a 
deep dive into a specific area. This framework 
harnesses the power of natural language processing, 
specifically transformer models, and incorporates 
principles from graph theory to distil the essence of 
extensive scholarly work into a concise and 
informative map. By leveraging this framework, 
scientists can significantly expedite their ability to 
access pertinent information, identify emerging 
trends, and streamline the knowledge assimilation 
process. 

We have proven that using the proposed 
methodology will significantly increase the 
diversification of the set of articles compared to the 
original order provided by the search engine. The 
average cosine similarity drops from 0.49 to 0.15. 
Additionally, we have shown the amount of time a 
researcher will save to arrive at the same 
comprehensive articles – 20 hours reading time.  

The innovation highlighted in this paper lies in 
the framework itself and its practical application 
within the realm of optimizing literature reviews. It 
represents a comprehensive solution that researchers 
can directly utilize, whether by sourcing their 
information from ResearchGate or a collection of 
PDF articles.  

Our comprehensive experiments and 
comparisons with existing methods have 
demonstrated the effectiveness of our model in 
providing accurate guidance for exploring various 
domains of scientific literature. These findings 
underscore not only the efficiency of our approach 
but also its potential to revolutionize the way 
researchers navigate the ever-expanding landscape of 
scholarly publications. As the research advances, one 
avenue for enhancing the model could involve 
exploring various TSP algorithms to optimize and 
expedite the resolution time. Additionally, an 
improvement could entail incorporating cluster 
creation based on title embeddings, the number of 
reads, recommendations, and citations. These 
resultant clusters could then be leveraged to apply 
TSP between them, complementing the existing 
solution. This approach would not only offer an 
optimal path but also enable the suggestion of similar 
articles if a particular article is deemed "relevant." 
 
5. Conclusion 

 
The framework introduced in the paper is designed 

to address the challenge of finding the optimal path 
for literature research. The focus is on breadth, rather 
than depth, of knowledge which allows researchers to 
gain a comprehensive understanding of their chosen 
topics swiftly. 

The proposed solution harnesses the power of 
contextual embeddings and graph theory, enabling us 
to translate complex scholarly work into informative 
maps. With an impressive success rate of 
approximately 99.8% in data acquisition (mapping 
scraped articles to files), we ensured the quality and 
reliability of our test dataset. 

Through a Christofides approximation of the 
Traveling Salesman Problem (TSP) algorithm, our 
framework efficiently navigates through the 1425 
abstracts in reasonable time. The resulting path not 
only enhances the speed of knowledge assimilation 
(20 hours of continuous reading time saved) but also 
diversifies results, as reflected in the average cosine 
similarity scores and the histogram distribution. 

Furthermore, our evaluation of PDF readers has 
identified ‘pypdfium2’ as the optimal choice, based 
on factors such as accuracy, execution time, and the 
finding text based on key words. While other 
packages like ‘pdfnet’, ‘tika’, and ‘borb’ offer unique 
features, they come with certain limitations that may 
affect their suitability for comprehensive literature 
research using the proposed framework. In this way 
the solution can be applied not only to articles which 
are scraped but also stored as pdf files with a high 
degree of accuracy. 
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In conclusion, this paper presents a transformative 
approach to literature research optimization, offering 
researchers a powerful tool to navigate the ever-
expanding scientific literature efficiently. With a 
strong foundation in data acquisition, preprocessing, 
and analysis, our framework holds the promise of 
revolutionizing the way researchers explore and 
synthesize knowledge in the digital age. 
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