
TEM Journal. Volume 13, Issue 1, pages 349-354, ISSN 2217-8309, DOI: 10.18421/TEM131-36, February 2024. 

TEM Journal – Volume 13 / Number  1 / 2024.               349 

Application of Discrete and Fast Fourier 
Transforms to Increase the Speed  

of Multiscale Image Analysis 
Viliam Ďuriš P

1
P, Vladimir I. Semenov P

2
P, Sergey G. Chumarov P

3 

P

1
PDepartment of Mathematics, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 01, Slovakia  

P

2
PDepartment of General Physics, I.N. Ulyanov Chuvash State University, Cheboksary, 428015, Russia 

P

3
PDepartment of Radio Engeneering, I.N. Ulyanov Chuvash State University, Cheboksary, 428015, Russia 

Abstract – The paper compares the accuracy of 
reconstruction using different wavelets, and the 
authors also use fast and discrete Fourier transforms 
together to calculate the forward and inverse 
continuous wavelet transform in the frequency domain. 
Due to the use of calculations in the frequency domain, 
it becomes possible to perform decomposition, 
reconstruction, image filtering, and other 
transformations with high performance and precision. 
For multiscale signal analysis, a wavelet with a 
rectangular amplitude-frequency response has been 
constructed, which allows for an increase in the 
accuracy of decomposition and reconstruction 
compared to the Mallat algorithm presented in Matlab 
computer mathematics. At the same time, the time of 
multiscale analysis is reduced several times compared 
to the Mallat algorithm.  
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1. Introduction

Currently, multiple-scale analysis (MSA) of 
signals is performed using discrete orthogonal 
wavelets - the Mallat algorithm. 
Orthogonal wavelets with a compact carrier include 
the Daubechies (db𝑁), Symlet (sym𝑁) and Coiflets 
(coif𝑁) wavelets, where 𝑁 is the numeric index 
(1,2, . ..), that is, the order of the wavelet. All 
wavelets are constructed in the time domain. To 
obtain such wavelets, a system of a large number of 
equations is solved so that the wavelets have zero 
moments of a large order. These wavelets enable the 
analysis of the finer structure of non-stationary 
signals [1], [2], [3], [4]. These wavelets are not 
symmetric; to a certain extent, they are close to 
symmetric wavelets of a Symlet. Due to that 
asymmetry, the wavelets have nonlinear phase-
frequency characteristics which lead to signal 
distortion during reconstruction. When using such 
low-order wavelets for decomposition and 
reconstruction, a mosaic in the image can be noticed 
if reconstructed without using all the levels. 

For the analysis of signals in the frequency 
domain, it is widely used for image processing [5]; 
for example, for detecting ships on optical satellite 
images [6]. There are well-known ways to implement 
the continuous wavelet transform (WT) using the fast 
Fourier transform (FFT) [7], [8]. The authors have 
developed ways to increase the speed of MSA in the 
frequency domain based on wavelets constructed in 
the frequency domain [9]. The authors proposed an 
MSA algorithm using wavelets based on derivatives 
of the Gauss function [10], [11]. The proposed 
algorithm enables reconstructing the image. While it 
is mentioned in the scientific world that the WT is 
not orthogonal, there is no scaling function, wavelets 
do not have a compact carrier, and wavelets are used 
when performing continuous decomposition of 
signals, the capability of reconstruction is not 
ensured.  
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Wavelets based on derivatives of the Gaussian 
function are symmetric functions, the phase 
responses of such wavelets are linear . When using 
such wavelets for decomposition and reconstruction, 
there is no mosaic in the image, even if it is 
reconstructed without using all levels. 

WT is produced in the frequency domain using 
FFT. The amount of numerical procedures when 
using the discrete Fourier transform (DFT) is 
proportional to the square of the sequence of discrete 
values of the signal 𝑁2. When using the FFT, the 
amount of numerical procedures is proportional to 
the product of a sequence of discrete signal values by 
the logarithm of this sequence based on two log2 𝑁, 
which is significantly less compared to the DFT. This 
algorithm is called the fast Fourier transform. For 
example, due to the use of FFT, the calculation time 
is four orders of magnitude less than with direct 
numerical calculation of WT for sampling a signal of 
32768 samples.   

 The FFT algorithm, in addition to its advantages, 
has a number of disadvantages. The first is that the 
length of the sequence 𝑁 can only be 2𝑚, due to the 
fact that at each 𝑚 stage the current DFT is defined 
as a combination of DFTs of half the dimension. The 
second disadvantage is that it is impossible to 
calculate the inverse transformation separately for a 
certain range of Fourier coefficients. For example, it 
is impossible to calculate only the coefficients from 
10 to 20 of a number out of 1024 or to find the sum 
of only these harmonics. This is because there are 
two varieties of the FFT algorithm – the time-
thinning algorithm, which is called the Cooley-Tukey 
algorithm [12], [13], [14], and the frequency-thinning 
algorithm, which is called the Sandy-Tukey 
algorithm. In order for the output sequence to be 
linear when using the FFT time-thinning algorithm, 
the samples of the input sequence should be arranged 
in binary-inverse order. In order to rearrange the 
sequence in linear order, in the case of the FFT 
algorithm by frequency-thinning samples, it is 
necessary to rearrange the elements with binary-
inverse numbers after the conversion, since the 
frequency sequence is obtained in binary-inverse 
order, and the input sequence should be arranged in 
linear order. When using the DFT, both of these 
disadvantages are absent: there is the possibility to 
calculate the Fourier coefficients of any N-point 
sequence, and there is the possibility also to calculate 
the Fourier coefficients of any range separately, 
without calculating the remaining coefficients, if it is 
known a priori that they are zero. Such cases often 
occur, for example, when it is necessary to isolate a 
useful signal from noise, perform a wavelet analysis 
of the signal in the frequency domain, and calculate 
convolution in the frequency domain.  
 

2. Algorithms for Numerical Calculation of 
Direct and Inverse Fast WT signal in the 
frequency domain 
 

The algorithm for numerical calculation of the 
direct fast WT signal 𝑆(𝑡) in the frequency domain 
using wavelets based on derivatives of the Gaussian 
function is described in [10]. In this algorithm for 
even wavelets, in this algorithm steps 4 and 7 are not 
performed. For odd wavelets, steps 3 and 6 are not 
performed. 

Since it is necessary to decompose the image 
signal into several levels, steps 3-7 must be 
performed the same number of times. For example, if 
there are 512 samples in a 512 × 512 pixel image 
row, then there will be 9 decomposition levels for 
one row. For all rows, this number needs to be 
multiplied by 512, the same for all columns. For a 
color RGB image, the total number of decomposition 
levels will be 2754. Unlike Mallat's algorithm, MSA 
using FFT can be produced with a scale change 
factor of less than 2, so the number of decomposition 
levels can be 2, 3, 4 and so on times more. 
Consequently, it is necessary to find an algorithm 
that allows you to increase the calculation speed 
when using FFT. Such an algorithm was created 
using DFT and presented after the algorithm of 
numerical calculation of the inverse WT. 

The algorithm for numerical calculation of the 
inverse fast WT signal 𝑆(𝑡) in the frequency domain 
using wavelets based on derivatives of the Gaussian 
function is described in [10]. 
 
3. Application of the Advanced DFT Algorithm 

for MSA 
 

The authors have developed an algorithm that 
allows increasing the speed of calculating the DFT 
by two to three orders of magnitude, depending on 
the length of the 𝑁-point sequence. When performing 
the Fourier transform, the most time is spent on 
calculating the sines and cosines of integer multiples 
of the argument values. In order to reduce the 
calculation time of sines and cosines, the proposed 
algorithm uses not a direct calculation, but a 
recurrence relation, which allows sequentially 
calculating harmonics using the previous ones.  Also, 
using the periodicity properties of sine and cosine, 
not all their values are calculated, but only a quarter 
of N and half of all harmonics. That is, by calculating 
the fourth part of the sine and cosine, all the 
remaining values can be found. Since N/2 sines and 
N/2 cosines (harmonics with different frequencies) 
are needed to decompose a signal with the number of 
samples N in terms of sines and cosines, then due to 
the fact that the sines and cosines can be expressed 
through each other, only half of the harmonics can be 
used.  
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Only these values of sines and cosines are used to 
calculate all the coefficients of the Fourier 
transformation in a direct and produce the inverse 
Fourier transform. The speed of the algorithm 
proposed by the authors in comparison with the FFT 
algorithm will be less for a single application, since it 
is necessary to calculate a large value of sines and 
cosines. However, in the case of repeated use, when 
the values of sines and cosines are already stored in 
memory and there is no need to calculate all the 
Fourier coefficients, the conversion rate is 
comparable to the FFT rate and higher. Such a case 
appears when it is necessary to calculate the direct 
and inverse WT in the frequency domain. The more 
decomposition levels there are the more Fourier 
transform operations need to be performed with a 
different range of Fourier coefficients. This has 
become important because the authors have designed 
wavelets with a rectangular frequency response 
(Figure 1). In frequency response it can be seen that 
there is no irregularity in the bandwidth in the band 
of detention and no transition strips. Here one just 
needs a fast algorithm of DFT, which can be used to 
signal any N-point sequence. 

 

 
 

Figure 1. Rectangular frequency response   

 For greater accuracy, it is desirable that the 
number of samples 𝑁is divided into four or one adds 
1-3 zeroes to the length of the sequence. If the FFT 
algorithm is used, it is wasting time to compute the 
Fourier coefficients, whose value is zero. As levels of 
decomposition lot, time spent on the calculation of 
the Fourier coefficients increases. The use of 
wavelets with a rectangular quartermaster designed 
in the frequency domain allowed us to reduce the live 
WT to an image size of 512 × 512 pixels in 2 times 
in comparison with the algorithm using wavelets 
based on derivatives of the Gauss function. The 
return WT decreased thousands of times, when using 
a progressive scan image; that is, the computation of 
the inverse WT time is almost negligible compared to 
the direct WT. Using an advanced algorithm, DFT 
has enabled a reduction in the live WT an image size 
of 512 × 512 pixels by 50 percent, compared to only 
using the FFT algorithm for WT. 
 The authors compared the time of decomposition 
of the images of the developed algorithm in the 
frequency domain algorithm Mallat introduced in 
computer mathematics Matlab.  

The time decomposition of the image in the 
algorithm Mallat increases with the order of the 
wavelets Daubechies (db𝑁). Even for the time db2 
wavelet decomposition of the image algorithm 
Mallat, it is more than that of the algorithm in the 
frequency domain. The computing time of the 
algorithm Mallat several times increases when it is 
necessary to cleanse the signal from the noise, 
because it is necessary to equate some coefficients to 
zero and then reconstruct the signal. The algorithm 
Mallat calculations are performed iteratively, and 
therefore it is necessary to use all levels of the 
decomposition. And in the MSA algorithm in the 
frequency domain the time is not growing to clean 
signal, because it is enough to drop some levels of 
decomposition and then to reconstruct the signal. The 
MSA algorithm in the frequency domain 
computations is not iterative and random. For 
example, it is possible to decompose the signal into 
3, 6, and 7 levels and to restore the signal, and so on. 
If it is necessary to decompose and reconstruct the 
signal into these levels many times, then it is possible 
to decompose it into 3 levels at a time, because it is 
possible to construct a wavelet that combines 3 
wavelets. In fact, it will be a multiband filter. As a 
result of numerous studies in practice, the authors 
claim that the method of constructing wavelets can 
be used to synthesize digital filters with a finite 
impulse response. When using this method, filters 
with better characteristics are obtained than when 
using window methods, frequency sampling, and 
Chebyshev optimal filters. There are no transition 
bands on the frequency response for such filters and 
the shape is strictly rectangular. 
 
4. Comparison of Accuracy of MSA Using 

Different Wavelets 
 

The use of wavelets with a rectangular frequency 
response designed in the frequency domain, not only 
reduces the time the MSA, but also increases the 
accuracy of the reconstruction of the signal. Figure 2 
shows the original and the restored image 
decomposition and image reconstruction using the 
wavelet-based derivative of the second order of the 
Gauss function. Image size 512 × 512 is 
decomposed into 36 levels and then reconstructed 
with the use of all levels. When moving to the next 
level, the scale factor does not change by 2 times, but 
by a smaller amount. Because the image is 
decomposed into 36 levels, we can say that the WT is 
continuous. A progressive scan is applied 
horizontally and vertically. When comparing the 
original and reconstructed images, it can be noticed 
that they practically do not differ. This is due to the 
fact that the eye cannot distinguish the intensity 
values of 255 from 250 in the RGB color model. 
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 To the eye, all the intensities ranging from 250 to 
255 for red, green and blue seem to be white. Only at 
a lower intensity will the color appear darker to the 
eye. Also, with small intensity values from 0 to 4, 
everything will appear black, only when the intensity 
increases to 5-8, the eye sees the image slightly 
lighter. 

 

         
a) b) 

 

Figure 2. The original and the reconstructed image using 
wavelets based on the second derivative of the Gauss 

function 
 
 To demonstrate accuracy, compare the results of 
the decomposition and reconstruction of single 
rectangular pulse duration of 36 units for a sample of 
1024 samples for different wavelets. Also compare 
the results of the decomposition and reconstruction 2 
rectangular pulses with a difference of amplitudes 
1015. Unlike the image, we will be able to see the 
difference here due to the fact that we are not 
comparing the light intensity or the change in the 
waveform on the graph. The slightest change in the 
signal shape is well noticed by the eyes. Accurate 
signal recovery in a rectangular shape is the most 
difficult task, because the spectrum of such a signal 
is weak and falls off at high frequencies, and for the 
flat signal, the spectrum is narrower, and therefore 
such signals are more accurately restored. The 
rectangular signal is most strongly distorted at the 
front. The accuracy can be judged by how different 
the shape of a rectangle is after reconstruction. Next, 
let us compare the rectangular frequency response 
wavelets constructed by the authors in the frequency 
domain with widely used wavelets based on 
derivatives of the Gauss functions and Daubechies 
(db𝑁). 
 Figure 3 shows a rectangular pulse after 
decomposition into 20 levels and subsequent 
reconstruction with all levels using MHAT-wavelet. 
In Figure 3 it can be seen that the pulse shape is 
slightly different from the original rectangular pulse. 
Where the value of the signal must be exactly equal 
to zero, a value less than zero to approximately 0.025 
mm is, at the front of the pulse – it is less. Also, the 
value of the momentum is not exactly equal to 1, and 
it is less than approximately 0.025 mm; that is, the 
momentum has shifted a bit down. Decomposition of 
this same impulse to ten levels of deviation from the 

original pulse becomes even greater. This behavior is 
caused by the uneven frequency response of the bank 
of filters (wavelets) being more pronounced when 
using ten wavelets with different scale factors. For 
the case of decomposition on 20 levels of scale the 
factor changes not twice, but on a smaller magnitude 
in the transition to the next level. From this point of 
view, this WT is not discrete, and it is continuous. 
Thus, it is possible to decompose the signal to a 
much larger number of levels for restoration. The 
transition to the frequency domain allows us to 
design wavelets, unlike the Mallat algorithm, which 
is much more diverse in both Q-factor and resolution, 
and to use them to study one-dimensional and two-
dimensional signals. 
 

 
Figure 3. Reconstructed rectangular pulse using the 

MHAT-wavelet 
 

 Figure 4 shows a part of the samples located to 
the left of the rectangular pulse after decomposition 
into 10 levels and subsequent reconstruction with all 
levels using the Daubechies wavelet (db2) in the 
Mallat algorithm. Since the accuracy in the Mallat 
algorithm is much higher than when using wavelets 
based on the MHAT-wavelet, only a part of the left 
edge of the pulse is presented to estimate the 
discrepancy with the original. If, as in Figure 3, a 
pulse with an amplitude of 10−15 is also shown, then 
nothing but a straight line can be seen next to a pulse 
with an amplitude of 100. Due to the presence of 
negative values of the counts, plotting on a 
logarithmic scale seems to be a difficult task. Figure 
4 shows that, as in Figure 3, zeros differ by an 
average of 2 ∙ 10−13. With an increase in the order of 
the Daubechies wavelet, this difference is even 
greater, for example, for the db40 wavelet; the 
difference reaches 10−6. Obviously, this is due to the 
need to solve a large number of equations to obtain 
zero-order moments for Daubechies wavelets. 
 

 
 

Figure 4. Part of the samples to the left of the rectangular 
pulse reconstructed using the Daubechies wavelet (db2) 
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 Figure 5 shows part of the samples located to the 
left of the rectangular pulse after decomposition into 
10 levels and subsequent reconstruction with all 
levels using a wavelet constructed in the frequency 
domain. Figure 5 shows that the accuracy of the 
pulse reconstruction is even higher. The pulse exactly 
repeats the shape of the rectangle if we consider the 
signal with an accuracy of 10−13. But if we consider 
the reconstructed signal with even greater 
magnification, we will see that the zeros also differ 
by some amount. 
 Figure 6 shows the same part of the reconstructed 
signal to the left of the pulse after zooming in. Here, 
the difference from zero is almost a thousand times 
less than when processing using the Mallat 
algorithm, so we can say that the transformation is 
strictly orthogonal. 
 We see a pulse whose level is 10-15 times less than 
the neighboring rectangular pulse (Figure 7). This 
pulse is distorted due to the fact that during 
decomposition and subsequent reconstruction, the 
zeros next to the large pulse are not exactly zero, as 
shown in Figure 6. 
 

 
 

Figure 5. Part of the samples to the left of the rectangular 
pulse reconstructed using a wavelet constructed in the 

frequency domain 
 
 When reconstructing these two pulses using the 
Mallat algorithm, a small pulse cannot be seen, since 
the calculation error is almost 1000 times greater 
than this pulse. We can say that a small pulse is 
"drowned" in the noise of the calculation. This is 
similar to how a sinusoid with small amplitude 
against a sinusoid with large amplitude can be 
invisible due to the effect of frequency leakage. 
When reconstructing two pulses using an MHAT 
wavelet, a small pulse is visible up to 10−13order. In 
this case, the reconstructed signal is shifted down, 
and the shape of the small signal only changes, but 
does not disappear in noise due to the fact that it is 
not noise with random values, but an inclined straight 
line. Against the background of a straight line, a 
small pulse is noticeable. We can say that the 
MHAT-wavelet is no worse at restoring a small pulse 
against a large background than the Daubechies 
wavelets of a large order. 

 Figure 6 shows that there are areas near the pulse 
where the signal value is not exactly zero. In all 
likelihood, this is also due to the calculation error. It 
can be seen that the calculation error is almost 1000 
times less than when using the Mallat algorithm. 

 

 
 

Figure 6. Part of the samples to the left of the rectangular 
pulse reconstructed using a wavelet constructed in the 

frequency domain after zooming in 
 

 
 

Figure 7. A pulse that is 10−15times smaller than the 
neighboring rectangular pulse after processing using a 

wavelet constructed in the frequency domain after 
zooming in 

 

 The use of wavelets with rectangular frequency 
response for decomposition and reconstruction 
makes it possible to process one-dimensional and 
two-dimensional signals more accurately and faster. 
Such wavelets are much better than the discrete 
wavelets used in the Mallat algorithm, which is 
demonstrated in the work. 
 
5. Conclusion 

 
Wavelets based on derivatives of the Gauss 

function allow reconstructing the signal, conducting 
multiscale analysis, and filtering one-dimensional and 
two-dimensional signals, although the scientific 
literature says the opposite. The Pearson correlation 
coefficient of the original signal with the 
reconstructed signal for sampling 1024 samples is at 
least 0.999. The profiling of the program shows that 
the time of the wavelet transformation using FFT is 
15,000 times less than with direct numerical 
integration for sampling a signal of 32,768 samples 
[11], [15]. 
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Strictly orthogonal wavelets constructed in the 
frequency domain make it possible to reduce the 
decomposition and reconstruction time of one-
dimensional and two-dimensional signals, since they 
allow for calculation of the Fourier transform in fewer 
operations. Due to this, the conversion time is 
reduced even more than when using wavelets based 
on derivatives of the Gaussian function. They also 
allow one-dimensional and two-dimensional signals 
to be reconstructed with greater accuracy. The 
Pearson correlation coefficient of the original signal 
with the reconstructed signal for sampling 1024 
samples is not less than 0.9999999. The accuracy of 
the MSA calculation is almost 1000 times higher than 
for the Mallat algorithm presented in Matlab 
computer mathematics. This algorithm allows users to 
get more levels of decomposition because the 
multiplicity can be less than two. This is the main 
advantage over the Mallat algorithm for discrete WT. 
This allows us to study the signal in more detail, since 
the quality factor of the wavelets is higher. The 
frequency response of strictly orthogonal symmetric 
and antisymmetric wavelets has a rectangular shape. 
To obtain such characteristics in the time domain, it is 
necessary to solve a system of an infinite number of 
equations. This method leads to the fact that the 
calculation time of such equations will increase a lot 
and will lead to an increase in the calculation error. 

 
Abbreviations 

DFT  Discrete Fourier Transform 
FFT  Fast Fourier Transform 
FWT  Fast Wavelet Transform 
MSA  Multiple-Scale Analysis 
WT  Wavelet Transform 
RGB  Red, Green, Blue 
MHAT               Mexican HAT 
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