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Abstract – Motorcycle accidents in East Java are 
more common than accidents in other modes of 
transportation. In addition to the many motorcycle 
users today, human, environmental, and road factors 
are considered the highest causes of these accidents. 
The study's goal is to find the best model of the 
Generalized Poisson Family Distribution (GPR), 
namely Lagrangian Poisson Regression (LPR) and to 
construct a model that will quantify the frequency of 
motorcycle accidents in East Java. Akaike Information 
Criterion (AIC) and Schwarz Bayesian Criterion 
(SBC) criteria are the model comparison methods used 
in this research. The selection was also made based on 
the model's exponential coefficient with a 95% CI to 
further deepen the selection results obtained. In 
addition, the paired samples test was performed to 
determine the degree of dissimilarity between the 
outcomes produced by the developed model and the 
actual data. The best performance model is applied to 
identify the characteristics or factors highly involved in 
motorcycle accidents. The research uses secondary 
data from related agencies, namely the East Java 
Regional Police, especially the traffic accident unit, and 
East Java BPS, for 38 cities and districts in 2021. The 
numerical optimization method used is the iteratively 
reweighted least squares (IRLS) algorithm, assisted by 
R Studio software. 
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The study findings show that LPR is the most 
efficient and exact approach for modeling the 
frequency of motorcycle accidents. Meanwhile, the 
percentage of teenagers ( 18TXR1R18T), the frequency of 
motorized vehicles ( 18TXR3R18T), and the average annual 
rainfall ( 18TXR5R18T) have a considerable impact on accident 
occurrence. This research has an important 
contribution, especially in the field of transportation 
modeling and designing appropriate strategies to 
reduce the frequency of motorcycle accidents. 

Keywords – Motorcycle accidents, generalized 
Poisson family distribution, selection model. 

1. Introduction

Traffic accidents are an issue in transportation that 
is becoming more common every year. Globally, 
fatalities among individuals aged 5 to 29 are 
predominantly attributed to motor vehicle collisions 
[1]. They account for the ninth-highest cause of 
mortality among individuals of all ages. Moreover, 
WHO reports that traffic accidents are anticipated to 
be the fifth most prevalent cause of mortality 
worldwide by 2030 [2], [3]. 

The issue of traffic incidents is a growing 
phenomenon in developing countries, such as 
Indonesia. Indonesia is ranked first, with an 
accidental death rate of 2.46% of total deaths [4]. 
From 2014 to 2018, the frequency of road accidents 
in Indonesia climbed by 3.30% every year [5]. There 
were 109,215 road events in 2018, with 29,472 
fatalities and 13,315 severe injuries [5]. The mode of 
transportation involved with the highest incidence of 
accidents is motorcycles. If seen from the statistical 
percentage of national police data in 2020, 78.9% of 
motorcycle accidents occurred in Indonesia, of which 
41,170 died, 35,660 people were seriously injured, 
and 160,300 were slightly injured. The areas with a 
large population, such as East Java Province, 
dominate Indonesia's vulnerability to traffic 
accidents. This province has many cities/regencies 
with metropolitan regions with high traffic density 
and mobility, so the accident rate is also relatively 
high in this area. 
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The motorcycle accident is one of the applied 
cases involving count data modeling. Because 
accidents are unusual and stochastic occurrences with 
a low probability of occurring, the Poisson 
distribution is the best choice for modeling them [6], 
[7]. The Poisson distribution serves as the 
fundamental component upon which a Poisson 
regression model is built. Meanwhile, equidispersion 
is a condition that Poisson regression must satisfy, 
which states that the mean and variance must possess 
identical values. [8], [9], [10], [11], [12]. Several 
studies have violations of assumptions, namely cases 
of overdispersion where the variance value exceeds 
the mean value. This case of overdispersion has been 
discussed in researches [13], [14], [15], [16], [17], 
[18]. Underdispersion is a condition that occurs when 
the variance is slight in comparison to the mean 
value. The underdispersion case is an uncommon 
occurrence [19]. Underdispersion situations have 
been extensively researched [20], [21], [22]. The 
principal shortcoming of Poisson regression is that 
the relationship between the mean and variance is 
dispersive. The result is a significant deviation value, 
which diminishes the accuracy of the model 
acquired. 

The generalized Poisson distribution family likely 
solves the overdispersion issue in Poisson regression. 
Lagrangian Poisson Regression (LPR) and 
Generalized Poisson Regression (GPR) are two 
generalized Poisson distribution families studied in 
this study. Lagrangian Poisson was introduced by 
study [23]. The Lagrangian Poisson distribution is a 
well-studied and popular alternative to the 
conventional Poisson distribution [24]. The authors 
of [25] revealed that the Lagrangian Poisson 
distribution performs at least as well as specific 
alternatives to the standard distribution when 
modeling the six data sets obtained in [26] 
concerning the frequency of injuries in car accidents. 
Model development is carried out through parameter 
transformation by transforming the parameters into 
GPR [27]. The model has been implemented for 
accident data with overdispersion cases [28]. The 
findings suggest that GPR is capable of accurately 
modeling the association between demographic 
characteristics, driving behavior, drug use, and the 
frequency of incidents involving senior drivers. The 
correlation between meteorological conditions and 
the occurrence of traffic accidents was examined in 
[29] where the performance of negative binomial 
regression is compared with GPR, Poisson, and 
COM-Poisson models. The findings of this research 
indicate that the GPR model exhibits lower AIC and 
BIC values in comparison to other regression models. 
As a consequence, the GPR is deemed more suitable 
for the examination of traffic accidents. 

 

In this paper, a generalized Poisson distribution 
family-based regression model is constructed using 
accident data obtained from the East Java Police 
Service. The development of these two models was 
compared using AIC and SBC criteria to determine 
the most reliable model. The selection was also made 
based on exponential coefficients of models with 
95% CI to deepen further the selection results 
obtained. In addition, the study use the paired 
samples test where the statistics gathered, provide 
insight into the magnitude of differences between the 
developing model and the observed data. 
Determination of a good model is also seen based on 
the value of the smaller mean paired differences. 

In addition, the factors contributing to the 
excessive occurrence of motorcycle accidents are 
identified by utilizing the performance of the best 
model. This research examines the combination of 
drivers attributes, road conditions, vehicle 
specifications, and environmental factors to assist the 
government in formulating effective methods to 
decrease the occurrence of motorcycle accidents in 
East Java Province. 

 
2. Material and Methods 

 
This research uses secondary data from related 

agencies, namely the East Java Regional Police, 
especially the traffic accident unit and East Java 
BPS, for 38 cities/districts in 2021. The response 
variables are the frequency of motorcycle accidents. 
Meanwhile, there were five predictor variables 
involved, namely the percentage of adolescents (X1), 
the percentage of low-level education (X2), the 
frequency of motorized vehicles (X3), the length of 
roads with good road conditions (X4), and the 
average annual rainfall (X5). 

Maximum likelihood estimation (MLE) is utilized 
in order to obtain the LPR and GPR models' 
parameters. The distribution approach will be 
ascertained in this paper through the process of 
maximizing the log-likelihood function. Parameter 
determination results in a nonlinear solution that 
cannot be solved exactly. Iteratively reweighted least 
squares (IRLS) was chosen as the numerical 
optimization method to solve parameter solutions 
using the R Studio software.   

 
2.1. Poisson Regression 
 
The p.d.f. of Y that has Poisson distribution is

 ( , ) ,  0,1, 2,3,..... ,
!

yep y y
y

λλλ
−

= =   (1) 

0λ >  is a distribution parameter [30].  
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Poisson regression has the following form. 
 ,i eλ = xβ     (2) 
where 

1 21 i i pix x x=   x   is the predictor 

variable, and 0 1 2 pβ β β β=   
Τ

β   is the 
regression parameter. 
 
2.2.  Dispersion  

 
Equidispersion conditions are assumed by the 

Poisson distribution [11], [31], where the mean value 
is equivalent to the variance. In many cases, 
however, these assumptions must be satisfied. 
Occasionally, the mean value exceeds the variance 
value, or conversely. This condition is also known as 
overdispersion or underdispersion. Model 
inaccuracies may result from the presence of this 
dispersion case. If the dispersion-indicating Poisson 
regression model is still employed, the estimation 
parameters become consistent and efficient. It causes 
the parameter estimates to be biased so that they can 
give wrong results in concluding the observed data 
[32]. The dispersion condition in the Poisson 
regression causes the mean value and variance to be 
related via a parameter denoting dispersion. 

 

 ( )  ( )  V X E Xτ τ λ= =   (3) 
 

where  τ  is the dispersion parameter. If 1>τ , there 
is overdispersion in the data, but if 1<τ  the data 
experiences underdispersion [33]. 
 
2.3.  Multicollinearity 
 

Multicollinearity arises when a number of 
predictor variables exhibit a substantial correlation 
with both the response variable and other predictor 
variables [34]. Significant variables become 
statistically insignificant as a result of the increase in 
standard error caused by the existence of this 
correlation. As stated in reference [35], 
multicollinearity can be detected by utilizing the 
variance inflation factor (VIF). 

 
 

2
1 1 .

1 i

VIF =
- R Tolerance

=   (4) 

2
iR is the coefficient of determination between a 

predictor variable ix  with other variables. 
Furthermore, the interpretation of the 

multicollinearity case is based on the VIF value. If 
the value is 10  >VIF , then multicollinearity exists 
among the predictor variables within the regression 
model. It causes a weak estimation of the regression 
coefficient [36]. Apart from using VIF, 
multicollinearity in regression can be determined 
using each predictor variable's tolerance.  

Tolerance values that are smaller than 0.10 will 
indicate the occurrence of multicollinearity. 
 
2.4.  Lagrangian Poisson Regression (LPR) 
 

The Poisson distribution underpins the LPR model 
formation. The LPR model possesses the ability to 
rectify problems associated with overdispersion or 
underdispersion.  

 
Definition 1. 
For the Lagrangian Poisson distribution, let iY  
represent the count response variable. The following 
is the definition of the p.d.f. 
 

( ) 1     0 
( ; , ) !
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i i
i
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    (5) 

 
with 0,iψ > 0 1,θ≤ ≤  and max(1, / 4 1).iψ θ− ≤ <  
Meanwhile, other zeros have 0i kψ θ+ >  when 

0θ <  where k is the largest positive number. The 
mean and variation of the Lagrangian Poisson 
distribution are finite when 1θ <   is 

( ) 1( ) 1iE Y ψ θ −= −  and ( ) 3( ) 1iVar Y ψ θ −= −  [37]. 
When 0θ = , equation (1) becomes the Poisson 
distribution. Next, the systematic components of the 
Lagrangian Poisson distribution is 

0
1

exp( )i j ji
j

xψ β β
=

= +∑  and substituted into 

equation (5), so we get  
0
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β (6) 

 
2.5.  Generalized Poisson Regression (GPR) 
 

GPR extends the Poisson regression model and or 
more predictor variables and response variables [38]. 
GPR is a technique utilized to analyze the correlation 
between two variables. Overdispersion or 
underdispersion data can handle the use of the GPR 
model.  
 

Definition 2. 
Suppose the response variable count. The generalized 
Poisson regression model has the p.d.f defined as 
follows.

(1 )1
1(1 )
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i i ii
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σ ϕ
ϕγσ ϕ
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 +− −  + 
  +

=  + 
  (7) 

 
for 1,2 ,3,..., .iy n=  If 0ϕ = , equation (8) becomes 
the p.d.f of the Poisson distribution.  
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Meanwhile, if 0ϕ > , the generalized Poisson 
regression model shows overdispersion case, but if 

0ϕ <  generalized Poisson regression shows 
underdispersion case [29]. Furthermore, the 
systematic component of the generalized Poisson 

distribution is 
0

1
xj ji

j
i e

β β

σ
+ ∑

== and substituted into 
equation (7) to obtain  
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       (8) 
2.6.  Best Model Selection 
 
Akaike Information Criterion (AIC) 

AIC is a criterion utilized in econometrics to select 
a model. The equation is 
     2 ( ) 2AIC l pθ= − + .                  (9) 
( )l θ  is the log-likelihood function, and p represents 

the quantity of model parameters. 

The optimal model is determined by the minimal 
AIC value [39], [40]. 
Schwarz Bayesian Criterion (SBC) 

SBC is the best model selection criterion, which is 
formulated as follows: 
    2 ( ) (log )SBC l n pθ= − + .                      (10) 
n denotes the quantity of data. Optimal is the 
regression model with the smallest SBC value. BIC 
is another name for SBC, which is Bayesian 
information criterion. [41]. 
 
3. Result and Discussion 

 
This area is one of the provinces in Unitary State 

Republic of Indonesia and occupies the easternmost 
region of Java Island. East Java Province comprises 
an area of 46,428.57 km2, comprising both land and 
sea regions. With 29 regencies and 9 cities, the 
region is comprised of a total of 38 regencies/cities. 

 
 

 

 
Figure 1. The distribution of accident areas 

 
3.1.  The Frequency of Motorcycle Accidents in East 

Java  
 
The frequency of traffic accidents is classified into 

six distinct categories in Figure 1. The categories are 
as follows: very low (164-285 incidents), low (286-
406 incidents), moderate (407-527 incidents), 
moderately high (528-648 incidents), high (649-769 
incidents), and very high (770-896 incidents). Areas 
with the highest incident frequency are marked in 
red, and the lowest is marked with solid green. In 
addition, the frequency of accidents shows a pattern 
of areas with the same category that tend to be 
clustered.  

Almost all regencies/cities located in the east and 
south of East Java Province are included in areas 
with a moderate number of motorcycle accidents. 
Jombang, Sidoarjo, and Surabaya City are three East 
Java regions with a very high number of accidents. 
Meanwhile, Bangkalan and Sampang Regencies have 
a low number of accidents. 
 
3.2.  Goodness of Fit Test  
 

For modeling accidents, Poisson distribution is the 
appropriate choice. This study uses the Kolmogorov-
Smirnov test to ascertain data fit to the poisson 
distribution. 
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As shown in Table 1, at 0.104, Asymp. Sig. (2-
tailed) exceeds the significance level. The data 
conforms to a Poisson distribution. Tests for the 
assumptions of non-multicollinearity and equidis-
persion are conducted after the goodness of fit test 
has determined that the data results are appropriate 
poisson distribution. 
 

Table 1. Goodness-of-fit test for Poisson distribution 
 

One-Sample Kolmogorov-Smirnov Test 
 Y 

N 38 

Poisson Parametera,b Mean 510.13 
Most Extreme 
Differences 

Absolute .197 
Positive .197 
Negative .189 

Kolmogorov-Smirnov Z 1.216 
Asymp. Sig. (2-tailed) .104 
a. Test distribution is Poisson. 
b. Calculated from data. 

 
3.3.  Non-Multicollinearity Detection 

 
Non-multicollinearity detection is a procedure 

utilized to determine whether or not the independent 
variables comprising a model exhibit correlation. It is 
presumed that the independent variables exhibit no 
correlation within the regression model. 
Multicollinearity can be established through the 
examination of the correlation matrix values and VIF 
for each independent variable. If the value of the 
correlation matrix is relatively modest and the value 
of the VIF is less than 10, then it is determined that 
the model does not exhibit multicollinearity. 
 
 

Table 2. Variance inflation factor (VIF)  
 

Variabel X1 X2 X3 X4 X5 
VIF 1.091 1.132 1.205 1.212 1.274 

 
According to Table 2, VIF values for each 

independent variable are all below 10. Therefore, 
based on the absence of multicollinearity in the 
observed data, it is possible to proceed with the data 
analysis using the regression model. In addition, the 
correlogram demonstrates multicollinearity. 

 
 

Figure 2. Correlogram with correlation coefficient 

The correlation value between independent 
variables ranges from -0.244 to 0.231, as shown in 
Figure 2. It indicates that the predictor variables do 
not exhibit a significant correlation. 

 
3.4.  Equidispersion Assumption Test 

 
The poisson regression assumptions are satisfied 

when both the mean and variance possess an 
identical value. The equidispersion assumption can 
be examined by calculating the dispersion value.  
 
Table 3. Overdispersion test 
 

z dispersion p-value 
3.5296 26.05193 0.0002081 

  
As shown in Table 3, the data regarding the total 

number of traffic incidents are overdispersed, with a 
dispersion value of 26.05193 being greater than one. 
In addition, there is an overdispersion issue that can 
be known based on the fact that the p-value is below 
the level of significance ( 5%α = ). 

The variance increases in direct proportion to the 
mean value, as illustrated in Figure 3. It signifies the 
failure to satisfy the equidispersion assumption. The 
study employs LPR and GPR to instances of data 
overdispersion. 

 

 
Figure 3. Plot visualization of means against variances 

 
3.5.  Estimation of Lagrangian Poisson Regression 

(LPR) 
 
The LPR parameters were estimated by employing 

the Maximum Likelihood Estimation (MLE) 
technique. In accordance with Equation (7), the 
likelihood function is derived. 
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 
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  

∏β

      (11) 
Equation (11) provides the foundation for forming 
the log-likelihood function as follow.  



TEM Journal. Volume 13, Issue 1, pages 234-246, ISSN 2217-8309, DOI: 10.18421/TEM131-24, February 2024. 

TEM Journal – Volume 13 / Number  1 / 2024.                                                                                                                              239 

  
( )

0
1

1

0
1 1

, ln
i

j ji
j

yn x

j ji i
i j

l x e y
β β

θ β β θ=

−+ ∑

= =

  = + + +  
 

∑ ∑β
               

               
( )

0
1 ln !

j ji
j

x

i ie y y
β β

θ=
+ ∑ − − −  .   (12) 

Furthermore, equation (12) is maximized for 
parameter 0 1, ,..., ,pβ β β θ .  

The solution will be established by the use of a 
numerical technique known as the Iteratively 
Reweighted Least Squares (IRLS), with the 
assistance of R Studio software for optimization 
purposes. 
 

 

Table 4. LPR Model 
 

Variables Parameter Standard Error T value P value 
(Intercept) 4.5111 0.1160 38.8900 0.0000 

X1 0.1029 0.0383 2.6900 0.0072 
X2 0.0585 0.0423 1.3800 0.1665 
X3 0.1065 0.0357 2.9900 0.0028 
X4 -0.0321 0.0450 -0.7100 0.4757 
X5 -0.0968 0.0450 -2.1500 0.0315 

AIC = 485.689     Chi Square  = 21.53 
SBC = 497.152  P value        = 0.000644 

 
The frequency of motorcycle accident model with 

LPR is given as follows. 
 

1 2 3 4 54.5111 0.1029 0.0585X 0.1065X 0.0321X 0.0968ˆ .X Xeψ + + + − −=
 (13) 

Table 4 shows that the percentage of adolescents 
(X1), the percentage of low-level education (X2), the 
frequency of motorized vehicles (X3), the length of 

roads with good road conditions (X4), and the 
average annual rainfall (X5) significant effect 
simultaneously. It can be seen from the p-value on 
the Chi-Square test < level of significance (α=5%). 
In addition, at a significance level of 5%, the 
percentage of adolescent age (X1), the frequency of 
motorized vehicles (X3), and the average annual 
rainfall (X5) each have a significant effect partially. 

Figure 4. The plot of fitted vs residuals and normal Q-Q for the LPR model 
 

Figure 4 shows that the residuals generated by the 
Lagrangian Poisson regression spread randomly and 
are non-patterned, so the regression model can 
accurately analyze how many motorcycle accidents 
occur in East Java. Meanwhile, based on the normal 
Q-Q plot graph, the Lagrangian Poisson regression 
model with the parameter values that have been 
obtained provides a good fit for the data and is 
significant. 
 
3.6.  Generalized Poisson Regression (GPR) Estimation 

 
The maximum likelihood estimation (MLE) was 

also employed to compute the parameter for the GPR 
model. Furthermore, equation (9) is the basis for 
forming the likelihood function. 
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      (14) 
Furthermore, the log-likelihood function is obtained. 
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Furthermore, the log-likelihood function is 
maximized to get parameter values. As with LPR, 
parameter determination is carried out using the 

iteratively reweighted least squares (IRLS) algorithm 
optimization assisted by R Studio software.  
 

 
Table 5. GPR model 
 

Variables Parameter Standard Error T value P value 
(Intercept) 6.2179 0.0410 151.8300 0.0000 

X1 0.0733 0.0446 1.6400 0.1006 
X2 0.0911 0.0423 2.1600 0.0311 
X3 0.1548 0.0551 2.8100 0.0049 
X4 -0.0656 0.0430 -1.5300 0.1272 
X5 -0.1000 0.0452 -2.2100 0.0271 

AIC = 487.749  Chi Square = 19.47 
            SBC         = 499.212          P value            = 0.00157 

 
Based on Table 5, the frequency of motorcycle 

accident model with GPR is given as follows.  
 

1 2 3 4 56.2179 0.0733 0.0911X 0.1548X 0.0656X 0.1000ˆ .X Xeσ + + + − −=
        (16) 
 
The chi-square test shows that the p-value is below 
the predetermined level of significance (α=5%). The 
percentage of low-level education (X2), the frequency 
of motorized vehicles (X3), and the average annual 
rainfall (X5) influence partially on the frequency of 
motorcycle accidents. Besides that, the percentage of 

adolescents (X1), the percentage of low-level 
education (X2), the frequency of motorized vehicles 
(X3), the length of roads with good road conditions 
(X4), and the average annual rainfall (X5) have an 
effect significant simultaneously.  

Figure 5 shows that the normal Q-Q plot points are 
almost linear, so the GPR is still suitable for 
modeling data. However, the residuals generated by 
the GPR model are not randomly distributed. It 
suggests that the GPR model's analysis of the model 
representing the frequency of motorcycle incidents is 
less precise. 

 

 
Figure 5. The plot of fitted vs residuals and normal Q-Q for the GPR model 

 
3.7. Best Model Selection 

 
AIC and SBC are used to determine the best 

model. The good model is based on AIC and SBC 
with the smallest value. In addition, the frequency of 
significant parameters is also considered—the AIC 
and SBC values from the LPR and GPR models are 
given as follows. 

Table 6 shows that LPR has smaller AIC and SBC 
values than GPR. Thus, The LPR is the most 
effective model for determining the frequency of 
motorcycle collisions. 
 

 
Table 6. Model selection 

 

Step Model AIC SBC 
1 LPR 485.689 497.152 
2 GPR 487.749 499.212 

 
Best model selection can also be made using 

exponential coefficients of models with 95% CI to 
make the results of the comparison of the two models 
even more convincing. 
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Table 7. Exponential coefficients of models with 95% CI 
 

Variables 
LPR Model GPR Model 

Exp(B) 95% CI Exp(B) 95% CI 
LCI UCI LCI UCI 

(Intercept) 91.0258 72.5170 114.2587 501.6449 462.9544 543.5689 
X1 1.1084* 1.0283 1.1947 1.0760 0.9859 1.1744 
X2 1.0603 0.9759 1.1520 1.0954* 1.0083 1.1900 
X3 1.1124* 1.0373 1.1930 1.1674* 1.0479 1.3005 
X4 0.9684 0.8867 1.0577 0.9365 0.8607 1.0189 
X5 0.9077* 0.8311 0.9914 0.9049* 0.8281 0.9887 
* level of significance (α=5%) 
 

 
 

Figure 6. Exponential coefficients of models with 95% CI 

A marginal distinction can be observed between 
the LPR and GPR models, as indicated by the 
exponential coefficient value accompanied by a 95% 
confidence interval in Table 7 and Figure 6. If we 
focus on the 95% confidence interval, the LPR model 
produces an exponential coefficient value smaller 
than the GPR model. It indicates that the LPR model 
exhibits a reduced standard error in comparison to 
the GPR model. Thus, the LPR model exhibits 
superior predictive capability to the GPR model in 
determining the frequency of motorbike accidents in 
East Java. 
 

 
Table 8. Paired samples test actual-LPR 
 

 
  
Table 9. Paired Samples Test Actual-GPR 
 

 
 

 

 
 

Figure 7. The observations graph on LPR and GPR models against actual data 
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The value of Sig. (2-tailed) in Tables 8 and Tables 
9 are 0.008 and 0.013. The values are smaller than 
the level of significance (α=2.5%). It means that a 
discrepancy exists in the average number of 
accidents between the LPR and GPR models with 
actual data. 

In comparison to the GPR model, the mean paired 
differences value for the LPR model is less. This 
indicates that the LPR model more closely 
approximates the actual data in comparison to the 
GPR model. The LPR model's accuracy is consistent 
with findings from research [42], which indicate that 
the LP is a significantly more effective and user-
friendly model for modeling count data. Figure 3 is 
given to visualize the closeness of the LPR and GPR 
models to the actual data. 

Based on the best model, namely the LPR model, it 
is known that the percentage of adolescent age (X1), 
the frequency of motorized vehicles (X3), and the 
average annual rainfall (X5) have a considerable 
impact on accident occurrence in East Java. Equation 
4 shows that variable X1 has a coefficient value of 
exp (0.1029). It means that the frequency of 
motorcycle accidents in East Java will increase by 
exp (0.1029) = 1.1083 ≈ 1 event if there is an 
increase in the percentage of adolescents aged by 
1%. Lack of experience and maturity is one of the 
main reasons for the high risk of accidents among 
young drivers compared to other age groups. Critical 
mistakes contributing to 75% of teenage drivers' 
accidents include failing to check for, detect, and 
respond to hazards, driving faster than the specified 
speed limit, and hesitating. Teenagers are more likely 
to make critical decision-making errors when 
compared to adult drivers [43], [44].  

The coefficient of the variable X3 is exp (0.1065). 
It signifies that for 1 unit increase in the quantity of 
motorized vehicles in East Java, there would be a 
commensurate rise of exp (0.1065) = 1.109 ≈ 1 
motorcycle accident. In accordance with the 
circumstances in Indonesia, the annual growth rate of 
motorized vehicles has increased yearly. The 
occurrence of traffic accidents escalates in direct 
proportion to the growth in the quantity of cars 
present on the road, resulting in congestion across 
various sections of the road, especially during peak 
hours [45]. This study is in line with research [46], a 
significant proportion of fatal accidents are caused by 
a large number of motorized vehicles operating in 
unfavorable conditions, including tire explosions, 
which can increase the likelihood of fatal and 
property-damaging accidents.  

 
 
 
 

The coefficient of the variable X5 is exp (0.1065). 
It means that the frequency of motorcycle accidents 
in East Java will decrease by exp (-0.0968) = 0.907 ≈ 
1 event if there is an increase in average annual 
rainfall of 1 mm3.  

Authors of study [47] claim that rainfall is a 
protective factor in the lower traffic accident rates 
observed during heavy rains. Possible explanations 
for this observation are reduced traffic levels during 
heavy rain [48], [49] or driving slower to reduce risk 
[50]. Another study [51] shows that postponing 
driving during periods of heavy precipitation yields 
an approximation of the decrease in accident risk 
observed the day following the precipitation event 
[51]. 
 
4. Conclusion 

 
The generalized Poisson distribution family can be 

done to solve overdispersion issues in applied data. 
Based on the AIC and SBC values, LPR has a lower 
value than GPR, so the LPR model is the most 
effective approach for assessing the frequency of 
motorcycle accidents in East Java. The examination 
of the LPR model's standard error value, which is 
relatively lower in comparison to the GPR model, 
can provide insight into its effectiveness. The LPR 
model is smaller than the GPR model, as indicated by 
the exponential coefficient value accompanied by a 
95% confidence interval. Mean paired differences 
value is less for the LPR model than for the GPR 
model in the paired samples test. It suggests that the 
LPR model is more accurate in representing the real 
data compared to the GPR model. Therefore, this 
study determines that the LPR model is the most 
optimal approach for constructing models to predict 
the frequency of motorcycle accidents in East Java.  
Furthermore, the percentage of adolescent age (X1), 
the frequency of motorized vehicles (X3), and the 
average annual rainfall (X5) are the variables that 
have a significant effect on the occurrence of 
accidents.  
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Appendix 
 

 
The Source Code of Comparing Two Models  (Exponential Coefficients of Models with 95% CI) 
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