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Abstract – Benchmarking serves as the foundation 
for selecting a database in any project.  The available 
benchmarking tools evaluate system performance by 
subjecting it to random data and a set of arbitrary 
operations, without considering the specific 
characteristics of the application. The problem with 
these tools is that they reflect unrealistic benchmarks 
as they do not consider the nature, sequence, and type 
of queries the application will send to the database. In 
this paper, we introduced the approach of 
benchmarking the database based on the nature of 
interaction and queries between the application and 
database, and we built a benchmarking tool using Java 
to benchmark Redis and MongoDB as databases for a 
trip planning application with GTFS data of Budapest 
local transport data. Our study involved comparing the 
performance of both databases under ten different 
stress levels by simulating the number of querying 
clients. The results show that both database's 
performance is slightly decreased while increasing the 
number of clients (stress). However, Redis shows better 
performance compared to MongoDB. 
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1. Introduction

Organizations require efficient and reliable 
databases to support critical operations in today's 
fast-paced business environment. With the 
proliferation of various database technologies, it 
becomes increasingly difficult for organizations to 
determine the best fit for their specific use cases and 
requirements. A database benchmarking tool is 
essential in this context.. Users like analysts and data 
scientists commonly start the data science procedure 
by viewing potentially enormous volumes of data via 
interactions with a graphical user interface, often a 
data visualization software [1], [2], [3], [4]. 
However, the underlying data must be processed 
each time a user interacts with the UI (filtered, 
aggregated, etc.) and provide fast responses and 
interactions for the UI user [5], [6], [7]. The database 
and visualization communities have created several 
approaches, such as approximate query processing  

 [8], [9], web-based progressive [10], [11], [12], 
speculative query execution [13], [14], data cubes 
[13], [15], [16], spatial indexing [17], and lineage 
tracking [18], to fit this increasing demands for 
interactive and real-time performance. 

 Currently, there are insufficient benchmarks to 
experimentally determine which of the existing 
systems give reasonable performance and which 
systems are superior to others for real-time 
interactive-querying applications. This problem is 
made worse by the most demanding and widely used 
visualization scenarios, like crossfilter [19], [20], –
[21], where one interaction with the database may 
result in hundreds of requests being sent out per 
second with a requirement for almost instantaneous 
response. Unfortunately, current database 
benchmarks like the Star Schema Benchmark (SSB) 
[22], TPC-DS Benchmark [23], and TPC-H [24] are 
inadequate for making these comparisons because the 
workloads depicted in these benchmarks do not 
accurately reflect how database queries are produced 
by user activities, such tools like Tableau [25] or 
Spotfire [20].  
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Some research benchmark database systems using 
interactive workload [26], [27], [28], [29], [30] while 
others use tools like Yahoo Cloud Service 
Benchmarking tool(YCSB)[31], [32], [33]and 
HammerDB [34]. In both approaches, a predefined 
static set of operations is to be performed as the 
workload; for example, a given workload can 
perform 1000 operations of 950 read and 50 updates. 
The problem with these proposals is that the 
benchmarking does not consider the real-life use 
cases by the user or required by the application 
operation scenarios itself. Thus, the benchmark here 
will not reflect an accurate evaluation of the database 
for a specific application.   

Although research [35] tries to solve these 
problems and limitations by proposing the approach 
of benchmarking databases based on user interaction, 
they depend on visual data exploration, which cannot 
fit all types of applications. Therefore, as a 
contribution of this paper, we will introduce the idea 
of benchmarking the database based on the 
application nature and expected use case scenarios. 
First, we build a benchmarking tool using Java 
designed to generate a series of queries that can be 
defined based on the application's expected use cases 
and the database design structure. Then, we measure 
the performance under different work pressures by 
simulating the number of requests and simultaneous 
database access. This approach is different from 
other available tools as it benchmarks the database by 
evaluating the number of completed operations per 
time unit. By operation, here we mean feature or 
functionality provided by the application. For 
example, finding a trip-plan (possible path between 
two local transport stops) using local transport with  
General Transit Feed Specification data (GTFS) data 
can be a feature provided by a trip planning or a map 
application. Many operations or features within a 
database often require the execution of multiple sub-
queries. For instance, when finding a trip plan, this 
task may involve one or more queries on various 
tables, such as the route, stoptimes, and stop tables. 
The response time for retrieving the data can vary 
significantly based on the database structure or 
model used for data storage Thus, the traditional 
database benchmarking tools like YCSB [36] will not 
reflect the actual database performance for that 
application and design, as it perform arbitrary read 
and write operation without benchmarking the 
performance of the database system and the 
application database design together. The proposed 
benchmarking approach and tool calculate the 
number of complete operations per time unit the 
database can respond to. This also involves recording 
the number of sub-quires or database hits, which, in 
the meantime, provide the same information 
provided by traditional benchmarking tools. 

In this work, we use the trip planning application 
for GTFS for Budapest city local transport data. 
GTFS data is a standard format used by transit 
agencies worldwide to publish their local transport 
data so that applications like maps or route planning 
can use these data. As mentioned before, trip 
planning is the application's feature to find possible 
routes or trips between two stops using local 
transport (ex, tram, bus, metro). However, the 
number of queries (read from database) or the nature 
of queries (for example, read from hash or lList, or 
level of joining operation between tables) varies 
based on the database design for each trip plan 
depending on the location of the start and end stop 
points. Thus, using traditional database 
benchmarking can be unrealistic. In this research, we 
will benchmark two databases used to store GTFS 
data, Redis, and MongoDB, and define two models 
for storing GTFS data in both database systems. We 
will overview our Java benchmarking tool 
implementation and use it to evaluate the 
performance of these two databases in different cases 
of stress (concurrent user access) and compare both 
databases' results. 
 
2. Benchmarking 

 
Database benchmarking is a technique used to 

evaluate the performance of a database system. It 
involves running a series of tests that simulate the 
workload of the system and measuring its response 
time, throughput, and scalability. These tests help to 
identify bottlenecks, optimize the database 
configuration, and compare the performance of 
different database systems. 

One of the popular benchmarking tools is Yahoo 
Cloud Service Benchmarking (YCSB) [33], [37], an 
open-source tool designed to measure the 
performance of cloud databases. YCSB supports 
various NoSQL databases, including Apache 
Cassandra, MongoDB, and Redis. It provides a set of 
workloads, such as read-heavy, write-heavy, and 
mixed workloads, that try to simulate applications' 
read and write operations. YCSB tool measures the 
performance of the database system in terms of 
throughput, latency, and scalability. Throughput 
refers to the number of operations that the system can 
handle per second. Latency measures the time it 
takes for the system to respond to a request. Finally, 
scalability measures how well the system can handle 
an increasing workload. The limitation of YCSB is 
that the workload does not reflect the real application 
data. The benchmark operation is a set of arbitrary 
read, write, or update operations that do not reflect 
the actual application behavior. 
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3. GTFS Data 
 
This work will benchmark Redis and MongoDB 

performance for route planning applications using 
GTFS data. GTFS (General Transit Feed 
Specification) is a data format created by Google to 
describe public transportation schedules and related 
information [38], [39]. Many transit agencies use this 
format worldwide to provide data to application 
developers, allowing them to develop tools and 
services that make it easier for people to use public 
transit. 

GTFS data is typically organized into a set of 
data tables [40], [41], each containing information on 
a specific aspect of the transit system. GTFS data 
include many tables. Below, we describe the tables 
that we will use during this paper as its related to the 
route planning process: 

Stops: Contains information about individual 
stops, including their ID, name, location (latitude and 
longitude), and other details such as wheelchair 
accessibility. 

Routes: Contains information about transit 
routes, including their ID, name, and type (e.g., bus, 
subway, train). 

Trips: Contains information about individual 
trips on each route, including their ID, route ID, and 
other details such as the scheduled start and end 
times. 

StopTimes: Contains information about the 
scheduled arrival and departure times of vehicles at 
each stop for each trip. 

GTFS contains other tables like Calendar, 
Calendar Dates, Fare Attributes, Fare Rules, and 
Agency. 

These tables are typically stored in comma-
separated values (CSV) format and can be easily 
imported into databases or used in programming 
languages to build applications that use transit data. 

 
4. Methodology 

 
Our proposed benchmarking methods involve 

three steps, identify the application-database use case 
scenario and main application operations, define the 
data storage model in each database, and perform 
data queries based on these models. Next, we will 
describe this approach using GTFS data trip planning 
as an application example and Redis with  MongoDB 
as NoSQL database. 

4.1. Gtfs Trip Planning Database Interaction 
 
Trip planning for local transport using GTFS data 

can be defined as the algorithm that takes a starting 
point, a destination point, and a desired departure or 
arrival time as input and uses GTFS data to provide a 

set of possible recommended transit options to reach 
the destination. 

 
The algorithm would perform the following steps 

[42]: 
• Identify all transit routes that pass through 

the start and end stops. 
• For each candidate route, identify the 

sequence of stops along the route and the 
scheduled departure and arrival times at each 
stop let call this candidate stop set CSS. 

• For each stop in CSS if the stop is the 
destination stop, then add the set of the route 
leading to it to the solution list else, repeat 
steps one and two operations for the stop. 

• Depending on criteria like the maximum 
number of transit between routes and the 
total travel time. If the criteria are not met, 
stop searching further from that route. 

For our benchmarking purpose, the details of 
retrieving the data from the GTFS tables include 
routes, stops, and trip data. However, we will ignore 
the timing information as the following data 
interaction is a major part of the trip planning, and it 
is enough for benchmarking. Moreover, the timing 
data is stored in the stoptimes file, which is already 
benchmarked here. Therefore, the benchmarking 
steps will start by picking up a random stop as a 
start-stop and performing all the trip planning 
algorithm steps starting from that stop. Note that 
there is no need to repeat the operations until finding 
the destination as one iteration of the search will lead 
to executing all the queries types involved in the full 
trip planning. The set of benchmark step will be as 
follow: 

• Pick a random stop from the stoptimes table 
as start-stop,  

• Search the stoptimes file to get all trips that 
pass through the random stop and call it 
Trips set. 

• For each trip, get the trip information from 
the trips table, 

• For each trip, get the route information from 
the routes table 

Next, we will describe our candidate structures 
for storing GTFS data in both Redis and MongoDB. 

4.2. Redis GTFS Model 
 
We use Redis hash to represent the data table 

where each row is stored in a corresponding hash. 
Redis hash structure is identified by a unique key and 
contains a set of field-value pairs. We used the field 
to store the column headers and the value field to 
store the corresponding value at the row stored in the 
hash.  
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First, we form the key by concatenating the table 
name and primary key value, then all the foreign 
keys are separated by the "_" character. This format 
will create a unique identifier for each table row in 
the GTFS data as follow:  

Note that there is no primary or foreign key for 
some tables; in that case, it is replaced by a blank. 
Figure 1 below shows how the stoptimes file is 
stored in Redis.  

                                                         

 
 

Figure 1. Stoptimes file entity stored in Redis 

Thus, the number of keys stored in Redis equals 
the number of rows in all GTFS data tables. The scan 
command can be used to retrieve the corresponding 
hash. For example, to retrieve all the trips that pass 
through the stop with ID B5054510, we can use the 
following command: Scan stoptimes_B5054510_* 
0. By the nature of the scan command, it may be used 
many times while updating the cursor pointer to 
retrieve all the keys from the database. Performance 
variation is expected here, which makes 
benchmarking more demanding for such an 
application.  

The cycle for fetching the data from this structure 
includes using the scan command starting with the 
cursor equal to zero, collecting the set of the key 
returned by the first scan call using the returned 
cursor value to start another scan, and repeating the 
operation till get cursor value equal to zero again 
(that mean no more key to be found in Redis). For 
retrieving the trips and route data from the trips and 
routes table, we can use a simple HGET command as 
we have the whole key and no need to use the scan 
for pattern matching. The HGET command will 
return the data Q(1) complexity and use Redis's fast 
response as an in-memory database. 

 
 
 

4.3. MongoDB Model for GTFS Data 
 
We can define a MongoDB collection to 

represent each type of GTFS entity, such as stops, 
routes, trips, and schedules. Each document in the 
collection will represent a single entity and contain 
fields corresponding to the entity's properties. 

For example, Figure 2 is an example of a 
MongoDB document that represents a GTFS stop 
entity unlike the Redis database, where we need to 
use more than one command type, retrieving data 
from MongoDB document can be done using the find 
command.  

 
 

Figure 2. MongoDB code store stop eintity 
 
 
 

 

{ 

      "_id": 
ObjectId("617912eb39eaf2a2a8d20260"), 

    "stop_id": "1000", 

    "stop_name": "Grand Central Terminal", 

    "stop_lat": 40.752726, 

    "stop_lon": -73.977229 

} 

"TableName_PrimeryKey_ForeignKey1_ 

ForeignKey2_...._ ForeignKeyN”. 
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5. Our Benchmarking Tool 
 

We developed our benchmarking tool with Java 
using  Gradle version 7.2. The main classes in the 
project are shown in Figure 3 below.  

 
 
 

 

 

Figure 3. UML design for main classes in the benchmark tool 

We used the strategy design pattern so that in the 
future, support for new databases can be easily 
added. To support a database, the DataBaseInteractor 
abstract class must be implemented. To support 
Redis and MongoDB, RedisAction and 
MongoDBAction classes implement the 
DataBaseInteractor abstract class. The whole use 
case scenario must be implemented using the 
fechData function. The tool simulates many clients 
connecting to the database simultaneously using 
multi-threads. Each thread records the performance 
information and stores it in the StatisticData object. 
This data is then exported to CSV files. The tool can 
be configured to run a specific number of threads for 
a particular time. Each thread will go in a loop, 
picking up a random stop as a start-stop and fetching 
the route planning data for that stop. While looping, 
the client will record information like how many 
databases hit are served and how many complete 
queries are served. By database hit, we mean any 
read or write to the database, while a complete query 
is a set of hits that performs a route planning 
operation. 

 
 
 
 

6. Benchmarking Results 
 
In this section, we will describe the setting we 

used for our benchmarking tool during the 
experiments and then overview the results of the 
experiment. 

6.1. Settings 
The maximum number of threads and the test 

duration time must be defined to use our proposed 
benchmarking tool. Our proposed benchmarking tool 
can run with a different number of threads to 
simulate different levels of stress on the database. 
For example, if the user sets the max number of 
threads to 100 with a shift window of 10 threads per 
run, then the tool will start by benchmarking the 
database with 10 threads and then do a second run 
with 20 threads, and so on.  

Until the last run with 100 threads, which is the 
max number, this approach can give more details 
about the database performance with different stress 
levels and more flexibility for test under different 
computation power and hardware specifications. This 
benchmarking tool outputs three types of files. The 
first type contains the thread ID, and the number of 
database hits done by each thread.  
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In contrast, the second type shows the number of 
complete operations each thread does. The third file 
contains a summary of all runs together in one table. 
We run the experiment using a PC with the following 
hardware specification 11th Gen Intel(R) Core(TM) 
i5-1135G7 @ 2.40GHz   2.42 GHz, 8GB RAM, 
Windows 11 OS. Under the same specifications, we 
benchmark MongoDB and Redis databases. We set 
the Max Thread Number to 110, and the thread shifts 
up size to 10 and test time to 40 seconds. Thus,  the 
tool will start benchmarking the database using 10 
threads for 40 seconds, then another test run with 20 

threads for 40 seconds, and so on till the last run, 
with 110 threads for 40 seconds.  
For every run, the tool will output the first two types 
of files mentioned above. After the last run, the tool 
will produce the third type file, summarizing all runs 
and providing easier comparison and visualization. 

6.2. Results 
To compare the database accessibility, we select 

three test runs 20 threads, 60 threads, and 110 
threads. Table 1 shows the experiment results for the 
first 10 threads in each test run for MongoDB and 
Redis. 

Table 1. Test results for 20,60 and 110 threads run 
 

Thread 
ID 

MongoDB Redis 

Hits 
20 threads 

Hits 
60 threads 

Hits 
110 Threads 

Hits 
20 Threads 

Hits 
60 Threads 

Hits 
110 Threads 

0 8997 375 1078 28797833 7225407 3210808 
1 13086 939 499 27675503 7278314 3237905 
2 11116 2790 2865 27929125 7285905 3198596 
3 8262 327 970 18741209 7189834 3165443 
4 14519 1289 1258 29333027 7426133 3154295 
5 22247 169 0 27305631 7151923 3169713 
6 10360 645 1374 27938556 7289945 3355994 
7 9716 349 489 17456620 7251756 3221892 
8 6566 3067 0 29369999 7051873 3115420 
9 11463 8213 9146 27462338 7150764 3223875 
10 13604 845 3764 27738747 7056592 3099929 
 
The number of hits in the table represents the 

number of times the thread sent a request to the 
databases and got the response back. 

This data shows that both MongoDB and Redis 
performance decreased with increasing the number of 
threads. However, Redis offers faster response times 
of several million queries per 40 seconds than 
MongoDB, which serves thousands of queries per 40 
seconds. Of course, such results may be shown by 
any other benchmarking tool.  

Still, as we consider benchmarking the databases 
based on specific application use cases, we will go 
further and analyze the throughput of finding trip 
planning results. 

 Tables 2 and 3 below show the summary of all 
ten runs with different numbers of threads, including 
the total number of database hits, the total number of 
completed operations for 40 seconds, and the number 
of complete trip planning operations done per second 
for Redis and MongoDB, respectively. 

 

 
Table 2. Experiments summary for Redis 

 

No  Of  
Threads 

No of  DB Hits No of Complete 
Operation 

DB Hits  
per/Sec 

Complete Operation  
per/Sec 

10 577554675 261525 14438866 6538 
20 542528715 243550 13563217 6088 
30 461164242 208894 11529106 5222 
40 434841597 196189 10871039 4904 
50 361386447 163077 9034661 4076 
60 431072073 195215 10776801 4880 
70 399627851 180677 9990696 4516 
80 375112260 169421 9377806 4235 
90 365071720 165548 9126793 4138 

100 347442017 156039 8686050 3900 
110 341046978 154682 8526174 3867 
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Table 3. Experiments summary for MongoDB 

 
Figures 4 and 5 below highlight that the 

throughput decreases when threads increase for the 
Redis database. While for MongoDB, the number of 

threads does not affect the database performance at 
the same level as Redis. However, Redis's throughput 
is much more than what MongoDB can provide.

 

 
 

Figure 4. Relation between throughput and number of used threads (Redis) 

 
 

Figure 5. Relation between throughput and number of used threads (MongoDB) 

No  Of 
Threads 

No of  DB 
Hits 

No of Complete 
Operation 

DB Hits  
per/Sec 

Complete Operation  
per/Sec 

10 296746 132 7418 3 
20 263563 129 6589 3 
30 243914 112 6097 2 
40 256990 96 6424 2 
50 164201 87 4105 2 
60 100021 69 2500 1 
70 210965 89 5274 2 
80 133628 80 3340 2 
90 115265 59 2881 1 
100 213504 86 5337 2 
110 193595 89 4839 2 
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It is important to highlight here that the number 
of the required query (database hits) to perform one 
complete trip plan for the same input differs between 
Redis and MongoDB as each database uses a 
different model to store the GTFS data, as we 
described before. Therefore, although the throughput 
in the above charts depends on the GTFS use 
scenario, we can still have a benchmark on general 
query response time if we consider the database hits 
information in the tables. 
 
7. Conclusion 

 
Selecting the proper database system is essential 

for any project and application, which increases the 
need for database benchmarking. Available 
benchmarking tools like Yahoo Cloud Service 
Benchmarking Tool (YCSB) evaluate the 
performance of the database using a predefined 
workload containing a set of queries that may not 
reflect the need of the application. Recent research 
introduced the idea of benchmarking the database 
depending on user interactions and exploring data. 
This study proposed a benchmarking tool to evaluate 
the performance of databases under different stress 
levels depending on application interaction and use 
case scenarios. We use a trip planning application for 
GTFS data of Budapest city to benchmark Redis and 
MongoDB databases. The tool allows flexible testing 
by varying the number of threads used to simulate 
different stress levels on the database. The results 
showed that the performance of both databases 
decreased as the number of threads increased, but 
Redis had a faster response time than MongoDB. 
However, the study also analyzed the throughput of 
finding trip planning results and found that Redis had 
a higher throughput. Still, MongoDB throughput was 
less affected by the number of threads used in each 
experiment. It should be noted that the number of 
required queries to perform a complete trip plan 
differed between the two databases due to their 
different GTFS data storage models. Still, the 
benchmarking tool allowed for a comparison of the 
general query response time using the database hit 
output information. 
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