
TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2583

Application-Based Benchmarking on Redis and
MongoDB for Trip Planning using GTFS Data

Mustafa Alzaidi 1, Aniko Vagner 1

1 Department of Information Technology Faculty of Informatics University Of Debrecen,
Kassai ut 26, Debrecen, Hungary

Abstract – Benchmarking serves as the foundation
for selecting a database in any project. The available
benchmarking tools evaluate system performance by
subjecting it to random data and a set of arbitrary
operations, without considering the specific
characteristics of the application. The problem with
these tools is that they reflect unrealistic benchmarks
as they do not consider the nature, sequence, and type
of queries the application will send to the database. In
this paper, we introduced the approach of
benchmarking the database based on the nature of
interaction and queries between the application and
database, and we built a benchmarking tool using Java
to benchmark Redis and MongoDB as databases for a
trip planning application with GTFS data of Budapest
local transport data. Our study involved comparing the
performance of both databases under ten different
stress levels by simulating the number of querying
clients. The results show that both database's
performance is slightly decreased while increasing the
number of clients (stress). However, Redis shows better
performance compared to MongoDB.

Keywords – Benchmarking, trip-planning, NoSQL,
Redis, MongoDB, GTFS.

DOI: 10.18421/TEM124-70
https://doi.org/10.18421/TEM124-70

Corresponding author: Mustafa Alzaidi,
Department of Information Technology Faculty
of Informatics University Of Debrecen, Kassai ut 26,
Debrecen, Hungary
Email: mustafa.alzaidi@mailbox.unideb.hu

Received: 02 August 2023.
Revised: 30 October 2023.
Accepted: 14 November 2023.
Published: 27 November 2023.

 © 2023 Mustafa Alzaidi & Aniko Vagner;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
https://www.temjournal.com/

1. Introduction

Organizations require efficient and reliable
databases to support critical operations in today's
fast-paced business environment. With the
proliferation of various database technologies, it
becomes increasingly difficult for organizations to
determine the best fit for their specific use cases and
requirements. A database benchmarking tool is
essential in this context.. Users like analysts and data
scientists commonly start the data science procedure
by viewing potentially enormous volumes of data via
interactions with a graphical user interface, often a
data visualization software [1], [2], [3], [4].
However, the underlying data must be processed
each time a user interacts with the UI (filtered,
aggregated, etc.) and provide fast responses and
interactions for the UI user [5], [6], [7]. The database
and visualization communities have created several
approaches, such as approximate query processing

 [8], [9], web-based progressive [10], [11], [12],
speculative query execution [13], [14], data cubes
[13], [15], [16], spatial indexing [17], and lineage
tracking [18], to fit this increasing demands for
interactive and real-time performance.

 Currently, there are insufficient benchmarks to
experimentally determine which of the existing
systems give reasonable performance and which
systems are superior to others for real-time
interactive-querying applications. This problem is
made worse by the most demanding and widely used
visualization scenarios, like crossfilter [19], [20], –
[21], where one interaction with the database may
result in hundreds of requests being sent out per
second with a requirement for almost instantaneous
response. Unfortunately, current database
benchmarks like the Star Schema Benchmark (SSB)
[22], TPC-DS Benchmark [23], and TPC-H [24] are
inadequate for making these comparisons because the
workloads depicted in these benchmarks do not
accurately reflect how database queries are produced
by user activities, such tools like Tableau [25] or
Spotfire [20].

mailto:mustafa.alzaidi@mailbox.unideb.hu
https://www.temjournal.com/
https://doi.org/10.18421/TEM124-70

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

2584 TEM Journal – Volume 12 / Number 4 / 2023.

Some research benchmark database systems using
interactive workload [26], [27], [28], [29], [30] while
others use tools like Yahoo Cloud Service
Benchmarking tool(YCSB)[31], [32], [33]and
HammerDB [34]. In both approaches, a predefined
static set of operations is to be performed as the
workload; for example, a given workload can
perform 1000 operations of 950 read and 50 updates.
The problem with these proposals is that the
benchmarking does not consider the real-life use
cases by the user or required by the application
operation scenarios itself. Thus, the benchmark here
will not reflect an accurate evaluation of the database
for a specific application.

Although research [35] tries to solve these
problems and limitations by proposing the approach
of benchmarking databases based on user interaction,
they depend on visual data exploration, which cannot
fit all types of applications. Therefore, as a
contribution of this paper, we will introduce the idea
of benchmarking the database based on the
application nature and expected use case scenarios.
First, we build a benchmarking tool using Java
designed to generate a series of queries that can be
defined based on the application's expected use cases
and the database design structure. Then, we measure
the performance under different work pressures by
simulating the number of requests and simultaneous
database access. This approach is different from
other available tools as it benchmarks the database by
evaluating the number of completed operations per
time unit. By operation, here we mean feature or
functionality provided by the application. For
example, finding a trip-plan (possible path between
two local transport stops) using local transport with
General Transit Feed Specification data (GTFS) data
can be a feature provided by a trip planning or a map
application. Many operations or features within a
database often require the execution of multiple sub-
queries. For instance, when finding a trip plan, this
task may involve one or more queries on various
tables, such as the route, stoptimes, and stop tables.
The response time for retrieving the data can vary
significantly based on the database structure or
model used for data storage Thus, the traditional
database benchmarking tools like YCSB [36] will not
reflect the actual database performance for that
application and design, as it perform arbitrary read
and write operation without benchmarking the
performance of the database system and the
application database design together. The proposed
benchmarking approach and tool calculate the
number of complete operations per time unit the
database can respond to. This also involves recording
the number of sub-quires or database hits, which, in
the meantime, provide the same information
provided by traditional benchmarking tools.

In this work, we use the trip planning application
for GTFS for Budapest city local transport data.
GTFS data is a standard format used by transit
agencies worldwide to publish their local transport
data so that applications like maps or route planning
can use these data. As mentioned before, trip
planning is the application's feature to find possible
routes or trips between two stops using local
transport (ex, tram, bus, metro). However, the
number of queries (read from database) or the nature
of queries (for example, read from hash or lList, or
level of joining operation between tables) varies
based on the database design for each trip plan
depending on the location of the start and end stop
points. Thus, using traditional database
benchmarking can be unrealistic. In this research, we
will benchmark two databases used to store GTFS
data, Redis, and MongoDB, and define two models
for storing GTFS data in both database systems. We
will overview our Java benchmarking tool
implementation and use it to evaluate the
performance of these two databases in different cases
of stress (concurrent user access) and compare both
databases' results.

2. Benchmarking

Database benchmarking is a technique used to

evaluate the performance of a database system. It
involves running a series of tests that simulate the
workload of the system and measuring its response
time, throughput, and scalability. These tests help to
identify bottlenecks, optimize the database
configuration, and compare the performance of
different database systems.

One of the popular benchmarking tools is Yahoo
Cloud Service Benchmarking (YCSB) [33], [37], an
open-source tool designed to measure the
performance of cloud databases. YCSB supports
various NoSQL databases, including Apache
Cassandra, MongoDB, and Redis. It provides a set of
workloads, such as read-heavy, write-heavy, and
mixed workloads, that try to simulate applications'
read and write operations. YCSB tool measures the
performance of the database system in terms of
throughput, latency, and scalability. Throughput
refers to the number of operations that the system can
handle per second. Latency measures the time it
takes for the system to respond to a request. Finally,
scalability measures how well the system can handle
an increasing workload. The limitation of YCSB is
that the workload does not reflect the real application
data. The benchmark operation is a set of arbitrary
read, write, or update operations that do not reflect
the actual application behavior.

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2585

3. GTFS Data

This work will benchmark Redis and MongoDB

performance for route planning applications using
GTFS data. GTFS (General Transit Feed
Specification) is a data format created by Google to
describe public transportation schedules and related
information [38], [39]. Many transit agencies use this
format worldwide to provide data to application
developers, allowing them to develop tools and
services that make it easier for people to use public
transit.

GTFS data is typically organized into a set of
data tables [40], [41], each containing information on
a specific aspect of the transit system. GTFS data
include many tables. Below, we describe the tables
that we will use during this paper as its related to the
route planning process:

Stops: Contains information about individual
stops, including their ID, name, location (latitude and
longitude), and other details such as wheelchair
accessibility.

Routes: Contains information about transit
routes, including their ID, name, and type (e.g., bus,
subway, train).

Trips: Contains information about individual
trips on each route, including their ID, route ID, and
other details such as the scheduled start and end
times.

StopTimes: Contains information about the
scheduled arrival and departure times of vehicles at
each stop for each trip.

GTFS contains other tables like Calendar,
Calendar Dates, Fare Attributes, Fare Rules, and
Agency.

These tables are typically stored in comma-
separated values (CSV) format and can be easily
imported into databases or used in programming
languages to build applications that use transit data.

4. Methodology

Our proposed benchmarking methods involve

three steps, identify the application-database use case
scenario and main application operations, define the
data storage model in each database, and perform
data queries based on these models. Next, we will
describe this approach using GTFS data trip planning
as an application example and Redis with MongoDB
as NoSQL database.

4.1. Gtfs Trip Planning Database Interaction

Trip planning for local transport using GTFS data

can be defined as the algorithm that takes a starting
point, a destination point, and a desired departure or
arrival time as input and uses GTFS data to provide a

set of possible recommended transit options to reach
the destination.

The algorithm would perform the following steps

[42]:
• Identify all transit routes that pass through

the start and end stops.
• For each candidate route, identify the

sequence of stops along the route and the
scheduled departure and arrival times at each
stop let call this candidate stop set CSS.

• For each stop in CSS if the stop is the
destination stop, then add the set of the route
leading to it to the solution list else, repeat
steps one and two operations for the stop.

• Depending on criteria like the maximum
number of transit between routes and the
total travel time. If the criteria are not met,
stop searching further from that route.

For our benchmarking purpose, the details of
retrieving the data from the GTFS tables include
routes, stops, and trip data. However, we will ignore
the timing information as the following data
interaction is a major part of the trip planning, and it
is enough for benchmarking. Moreover, the timing
data is stored in the stoptimes file, which is already
benchmarked here. Therefore, the benchmarking
steps will start by picking up a random stop as a
start-stop and performing all the trip planning
algorithm steps starting from that stop. Note that
there is no need to repeat the operations until finding
the destination as one iteration of the search will lead
to executing all the queries types involved in the full
trip planning. The set of benchmark step will be as
follow:

• Pick a random stop from the stoptimes table
as start-stop,

• Search the stoptimes file to get all trips that
pass through the random stop and call it
Trips set.

• For each trip, get the trip information from
the trips table,

• For each trip, get the route information from
the routes table

Next, we will describe our candidate structures
for storing GTFS data in both Redis and MongoDB.

4.2. Redis GTFS Model

We use Redis hash to represent the data table

where each row is stored in a corresponding hash.
Redis hash structure is identified by a unique key and
contains a set of field-value pairs. We used the field
to store the column headers and the value field to
store the corresponding value at the row stored in the
hash.

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

2586 TEM Journal – Volume 12 / Number 4 / 2023.

First, we form the key by concatenating the table
name and primary key value, then all the foreign
keys are separated by the "_" character. This format
will create a unique identifier for each table row in
the GTFS data as follow:

Note that there is no primary or foreign key for
some tables; in that case, it is replaced by a blank.
Figure 1 below shows how the stoptimes file is
stored in Redis.

Figure 1. Stoptimes file entity stored in Redis

Thus, the number of keys stored in Redis equals
the number of rows in all GTFS data tables. The scan
command can be used to retrieve the corresponding
hash. For example, to retrieve all the trips that pass
through the stop with ID B5054510, we can use the
following command: Scan stoptimes_B5054510_*
0. By the nature of the scan command, it may be used
many times while updating the cursor pointer to
retrieve all the keys from the database. Performance
variation is expected here, which makes
benchmarking more demanding for such an
application.

The cycle for fetching the data from this structure
includes using the scan command starting with the
cursor equal to zero, collecting the set of the key
returned by the first scan call using the returned
cursor value to start another scan, and repeating the
operation till get cursor value equal to zero again
(that mean no more key to be found in Redis). For
retrieving the trips and route data from the trips and
routes table, we can use a simple HGET command as
we have the whole key and no need to use the scan
for pattern matching. The HGET command will
return the data Q(1) complexity and use Redis's fast
response as an in-memory database.

4.3. MongoDB Model for GTFS Data

We can define a MongoDB collection to

represent each type of GTFS entity, such as stops,
routes, trips, and schedules. Each document in the
collection will represent a single entity and contain
fields corresponding to the entity's properties.

For example, Figure 2 is an example of a
MongoDB document that represents a GTFS stop
entity unlike the Redis database, where we need to
use more than one command type, retrieving data
from MongoDB document can be done using the find
command.

Figure 2. MongoDB code store stop eintity

{

 "_id":
ObjectId("617912eb39eaf2a2a8d20260"),

 "stop_id": "1000",

 "stop_name": "Grand Central Terminal",

 "stop_lat": 40.752726,

 "stop_lon": -73.977229

}

"TableName_PrimeryKey_ForeignKey1_

ForeignKey2_...._ ForeignKeyN”.

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2587

5. Our Benchmarking Tool

We developed our benchmarking tool with Java
using Gradle version 7.2. The main classes in the
project are shown in Figure 3 below.

Figure 3. UML design for main classes in the benchmark tool

We used the strategy design pattern so that in the
future, support for new databases can be easily
added. To support a database, the DataBaseInteractor
abstract class must be implemented. To support
Redis and MongoDB, RedisAction and
MongoDBAction classes implement the
DataBaseInteractor abstract class. The whole use
case scenario must be implemented using the
fechData function. The tool simulates many clients
connecting to the database simultaneously using
multi-threads. Each thread records the performance
information and stores it in the StatisticData object.
This data is then exported to CSV files. The tool can
be configured to run a specific number of threads for
a particular time. Each thread will go in a loop,
picking up a random stop as a start-stop and fetching
the route planning data for that stop. While looping,
the client will record information like how many
databases hit are served and how many complete
queries are served. By database hit, we mean any
read or write to the database, while a complete query
is a set of hits that performs a route planning
operation.

6. Benchmarking Results

In this section, we will describe the setting we

used for our benchmarking tool during the
experiments and then overview the results of the
experiment.

6.1. Settings
The maximum number of threads and the test

duration time must be defined to use our proposed
benchmarking tool. Our proposed benchmarking tool
can run with a different number of threads to
simulate different levels of stress on the database.
For example, if the user sets the max number of
threads to 100 with a shift window of 10 threads per
run, then the tool will start by benchmarking the
database with 10 threads and then do a second run
with 20 threads, and so on.

Until the last run with 100 threads, which is the
max number, this approach can give more details
about the database performance with different stress
levels and more flexibility for test under different
computation power and hardware specifications. This
benchmarking tool outputs three types of files. The
first type contains the thread ID, and the number of
database hits done by each thread.

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

2588 TEM Journal – Volume 12 / Number 4 / 2023.

In contrast, the second type shows the number of
complete operations each thread does. The third file
contains a summary of all runs together in one table.
We run the experiment using a PC with the following
hardware specification 11th Gen Intel(R) Core(TM)
i5-1135G7 @ 2.40GHz 2.42 GHz, 8GB RAM,
Windows 11 OS. Under the same specifications, we
benchmark MongoDB and Redis databases. We set
the Max Thread Number to 110, and the thread shifts
up size to 10 and test time to 40 seconds. Thus, the
tool will start benchmarking the database using 10
threads for 40 seconds, then another test run with 20

threads for 40 seconds, and so on till the last run,
with 110 threads for 40 seconds.
For every run, the tool will output the first two types
of files mentioned above. After the last run, the tool
will produce the third type file, summarizing all runs
and providing easier comparison and visualization.

6.2. Results
To compare the database accessibility, we select

three test runs 20 threads, 60 threads, and 110
threads. Table 1 shows the experiment results for the
first 10 threads in each test run for MongoDB and
Redis.

Table 1. Test results for 20,60 and 110 threads run

Thread
ID

MongoDB Redis

Hits
20 threads

Hits
60 threads

Hits
110 Threads

Hits
20 Threads

Hits
60 Threads

Hits
110 Threads

0 8997 375 1078 28797833 7225407 3210808
1 13086 939 499 27675503 7278314 3237905
2 11116 2790 2865 27929125 7285905 3198596
3 8262 327 970 18741209 7189834 3165443
4 14519 1289 1258 29333027 7426133 3154295
5 22247 169 0 27305631 7151923 3169713
6 10360 645 1374 27938556 7289945 3355994
7 9716 349 489 17456620 7251756 3221892
8 6566 3067 0 29369999 7051873 3115420
9 11463 8213 9146 27462338 7150764 3223875
10 13604 845 3764 27738747 7056592 3099929

The number of hits in the table represents the

number of times the thread sent a request to the
databases and got the response back.

This data shows that both MongoDB and Redis
performance decreased with increasing the number of
threads. However, Redis offers faster response times
of several million queries per 40 seconds than
MongoDB, which serves thousands of queries per 40
seconds. Of course, such results may be shown by
any other benchmarking tool.

Still, as we consider benchmarking the databases
based on specific application use cases, we will go
further and analyze the throughput of finding trip
planning results.

 Tables 2 and 3 below show the summary of all
ten runs with different numbers of threads, including
the total number of database hits, the total number of
completed operations for 40 seconds, and the number
of complete trip planning operations done per second
for Redis and MongoDB, respectively.

Table 2. Experiments summary for Redis

No Of
Threads

No of DB Hits No of Complete
Operation

DB Hits
per/Sec

Complete Operation
per/Sec

10 577554675 261525 14438866 6538
20 542528715 243550 13563217 6088
30 461164242 208894 11529106 5222
40 434841597 196189 10871039 4904
50 361386447 163077 9034661 4076
60 431072073 195215 10776801 4880
70 399627851 180677 9990696 4516
80 375112260 169421 9377806 4235
90 365071720 165548 9126793 4138

100 347442017 156039 8686050 3900
110 341046978 154682 8526174 3867

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2589

Table 3. Experiments summary for MongoDB

Figures 4 and 5 below highlight that the

throughput decreases when threads increase for the
Redis database. While for MongoDB, the number of

threads does not affect the database performance at
the same level as Redis. However, Redis's throughput
is much more than what MongoDB can provide.

Figure 4. Relation between throughput and number of used threads (Redis)

Figure 5. Relation between throughput and number of used threads (MongoDB)

No Of
Threads

No of DB
Hits

No of Complete
Operation

DB Hits
per/Sec

Complete Operation
per/Sec

10 296746 132 7418 3
20 263563 129 6589 3
30 243914 112 6097 2
40 256990 96 6424 2
50 164201 87 4105 2
60 100021 69 2500 1
70 210965 89 5274 2
80 133628 80 3340 2
90 115265 59 2881 1
100 213504 86 5337 2
110 193595 89 4839 2

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

2590 TEM Journal – Volume 12 / Number 4 / 2023.

It is important to highlight here that the number
of the required query (database hits) to perform one
complete trip plan for the same input differs between
Redis and MongoDB as each database uses a
different model to store the GTFS data, as we
described before. Therefore, although the throughput
in the above charts depends on the GTFS use
scenario, we can still have a benchmark on general
query response time if we consider the database hits
information in the tables.

7. Conclusion

Selecting the proper database system is essential

for any project and application, which increases the
need for database benchmarking. Available
benchmarking tools like Yahoo Cloud Service
Benchmarking Tool (YCSB) evaluate the
performance of the database using a predefined
workload containing a set of queries that may not
reflect the need of the application. Recent research
introduced the idea of benchmarking the database
depending on user interactions and exploring data.
This study proposed a benchmarking tool to evaluate
the performance of databases under different stress
levels depending on application interaction and use
case scenarios. We use a trip planning application for
GTFS data of Budapest city to benchmark Redis and
MongoDB databases. The tool allows flexible testing
by varying the number of threads used to simulate
different stress levels on the database. The results
showed that the performance of both databases
decreased as the number of threads increased, but
Redis had a faster response time than MongoDB.
However, the study also analyzed the throughput of
finding trip planning results and found that Redis had
a higher throughput. Still, MongoDB throughput was
less affected by the number of threads used in each
experiment. It should be noted that the number of
required queries to perform a complete trip plan
differed between the two databases due to their
different GTFS data storage models. Still, the
benchmarking tool allowed for a comparison of the
general query response time using the database hit
output information.

References:

[1]. Alspaugh Nava; Liu Andrea; Jin Cindy; Hearst Marti

A., S. Z. (2018). Futzing and Moseying: Interviews
with Professional Data Analysts on Exploration
Practices. IEEE Transactions on Visualization and
Computer Graphics, 25(1), 22–31.
Doi: 10.1109/tvcg.2018.2865040.

[2]. Battle Jeffrey, L. H. (2019). Characterizing
Exploratory Visual Analysis: A Literature Review
and Evaluation of Analytic Provenance in Tableau.
Computer Graphics Forum, 38(3), 145–159.
Doi: 10.1111/cgf.13678.

[3]. Card, S. K., Mackinlay, J., & Shneiderman, B. (Eds.).
(1999). Readings in information visualization: using
vision to think. Morgan Kaufmann.

[4]. David John W., F. N. ; T. (1977). Exploratory data
analysis. Biometrics, 33(4), 768-NA.
Doi: 10.2307/2529486.

[5]. Miller, R. B. (1968). Response Time in Man-
Computer Conversational Transactions. Proceedings
of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, 267–277.
Doi: 10.1145/1476589.1476628.

[6]. Nielsen, J. (1993). Response Times: The 3 Important
Limits. Nngroup. Retrieved from:
https://www.nngroup.com/articles/response-times-3-
important-limits/ [accessed: 02 June 2023].

[7]. Shneiderman, B. (1984). Response time and display
rate in human performance with computers. ACM
Computing Surveys, 16(3), 265–285.
Doi: 10.1145/2514.2517.

[8]. Agarwal, S., Mozafari, B., Panda, A., Milner, H.,
Madden, S., & Stoica, I. (2013). BlinkDB: queries
with bounded errors and bounded response times on
very large data. Proceedings of the 8th ACM
European Conference on Computer Systems, 29–42.

[9]. Chaudhuri, S., Ding, B., & Kandula, S. (2017).
Approximate Query Processing. Proceedings of the
2017 ACM International Conference on Management
of Data, 511–519. Doi: 10.1145/3035918.3056097.

[10]. Albers, S. (2003). Online algorithms: a survey.
Mathematical Programming, 97(1), 3–26.
Doi: 10.1007/s10107-003-0436-0.

[11]. Fekete Danyel, Nandi Arnab, Sedlmair Michael, J.-
D. F. (2019). Progressive Data Analysis and
Visualization (Dagstuhl Seminar 18411). In Dagstuhl
Reports, 8(10). Doi: 10.4230/dagrep.8.10.1.

[12]. Hellerstein Peter J.; Wang Helen J., J. M. ; H.
(1997). Online aggregation. ACM SIGMOD Record,
26(2), 171–182. Doi: 10.1145/253262.253291.

[13]. Battle, L., Chang, R., & Stonebraker, M. (2016,
June). Dynamic prefetching of data tiles for
interactive visualization. In Proceedings of the 2016
International Conference on Management of Data,
1363-1375. Doi: 10.1145/2882903.2882919.

https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

TEM Journal – Volume 12 / Number 4 / 2023. 2591

[14]. Kamat, N., Jayachandran, P., Tunga, K., & Nandi, A.
(2014). Distributed and interactive cube exploration.
2014 IEEE 30th International Conference on Data
Engineering, 472–483.

[15]. Lins James T., Scheidegger Carlos, L. K. (2013).
Nanocubes for Real-Time Exploration of
Spatiotemporal Datasets. IEEE Transactions on
Visualization and Computer Graphics, 19(12), 2456–
2465. Doi: 10.1109/tvcg.2013.179.

[16]. Liu Biye, Heer Jeffrey, Z. J. (2013). imMens : real-
time visual querying of big data. Computer Graphics
Forum, 32, 421–430. Doi: 10.1111/cgf.12129.

[17]. Tao Xiaoyu, Wang Yedi, Battle Leilani, Demiralp
Çağatay, Chang Remco, Stonebraker Michael, W. L.
(2019). Kyrix: Interactive Pan/Zoom Visualizations at
Scale. Computer Graphics Forum, 38(3), 529–540.
Doi: 10.1111/cgf.13708.

[18]. Psallidas, F., & Wu, E. (2018). Provenance for
Interactive Visualizations. Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, 1–
8. Doi: 10.1145/3209900.3209904.

[19]. Moritz, D., Howe, B., & Heer, J. (2019). Falcon:
Balancing interactive latency and resolution
sensitivity for scalable linked visualizations.
In Proceedings of the 2019 CHI conference on human
factors in computing systems, 1-11.
Doi: 10.1145/3290605.3300924.

[20]. Spotfire. (1995). TIBCO Spotfire. Tibco. Retrieved
from: https://www.tibco.com/products/tibco-spotfire
[accessed: 05 June 2023].

[21]. Tweedie, L., Spence, B., Williams, D., & Bhogal, R.
(1994, April). The attribute explorer. In Conference
companion on Human factors in computing systems,
435–436 Doi: 10.1145/259963.260433.

[22]. O’Neil, P., O’Neil, E., Chen, X., Revilak, S. (2009).
The Star Schema Benchmark and Augmented Fact
Table Indexing. In Nambiar, R., Poess, M. (eds)
Performance Evaluation and Benchmarking. TPCTC
2009. Lecture Notes in Computer Science, 5895.
Springer, Berlin, Heidelberg.
Doi: 10.1007/978-3-642-10424-4_17.

[23]. TPC. (n.d.). TPC-DS. TPC. Retrieved from:
http://www.tpc.org/tpcds/, [accessed: 17 June 2023].

[24]. TPC. (n.d.). TPC-H. TPC. Retrieved from:
http://www.tpc.org/tpch/, [accessed: 18 June 2023].

[25]. Stolte Diane L.; Hanrahan Pat, C. T. (2002). Polaris:
a system for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer
Graphics, 8(1), 52–65. Doi: 10.1109/2945.981851.

[26]. Battle, L., Chang, R., Heer, J., & Stonebraker, M.
(2017, October). Position statement: The case for a
visualization performance benchmark. In 2017 IEEE
Workshop on Data Systems for Interactive Analysis
(DSIA) 1-5. IEEE. Doi: 10.1109/dsia.2017.8339089.

[27]. Eichmann, P., Zgraggen, E., Zhao, Z., Binnig, C., &
Kraska, T. (2016). Towards a Benchmark for
Interactive Data Exploration. IEEE Data Eng. Bull.,
39, 50–61.

[28]. Idreos, S., Papaemmanouil, O., & Chaudhuri, S.
(2015). Overview of data exploration techniques.
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 277–281.

[29]. Jiang, L., Rahman, P., & Nandi, A. (2018).
Evaluating interactive data systems: Workloads,
metrics, and guidelines. Proceedings of the 2018
International Conference on Management of Data,
1637–1644.

[30]. Tang, N., Wu, E., & Li, G. (2019). Towards
democratizing relational data visualization.
Proceedings of the 2019 International Conference on
Management of Data, 2025–2030.

[31]. Cooper, B., Silberstein, A., Tam, E., Ramakrishnan,
R., & Sears, R. (2010). Benchmarking cloud serving
systems with YCSB. Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, 143–
154. Doi: 10.1145/1807128.1807152.

[32]. Claesen, C., Rafique, A., Van Landuyt, D., &
Joosen, W. (2022). A YCSB Workload for
Benchmarking Hotspot Object Behaviour in NoSQL
Databases. In Performance Evaluation and
Benchmarking: 13th TPC Technology Conference,
TPCTC 2021, Copenhagen, Denmark, August 20,
2021, Revised Selected Papers 13, 1-16. Springer
International Publishing.

[33]. Madushanka, T., Mendis, L., Liyanage, D., &
Kumarasinghe, C. (2015). Performance Comparison
of NoSQL Databases in Pseudo Distributed Mode:
Cassandra, MongoDB & Redis. Researchgate.

[34]. Chen, Y., Xie, X., Wu, J. (2015). A Benchmark
Evaluation of Enterprise Cloud Infrastructure. In
Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds)
Web Technologies and Applications. APWeb 2015.
Lecture Notes in Computer Science(), 9313. Springer,
Cham. Doi: 10.1007/978-3-319-25255-1_68.

[35]. Battle, L., Eichmann, P., Angelini, M., Catarci, T.,
Santucci, G., Zheng, Y., Binnig, C., Fekete, J.-D., &
Moritz, D. (2020). Database Benchmarking for
Supporting Real-Time Interactive Querying of Large
Data. Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data,
1571–1587. Doi: 10.1145/3318464.3389732.

[36]. Ose, O., Okokpujie, K., Nkordeh, N., Ndujiuba, C.,
John, S., & Uzairue, I. (2018). Performance
Benchmarking of Key-Value Store NoSQL
Databases. International Journal of Electrical and
Computer Engineering (IJECE), 8(6), 5333.
Doi: 10.11591/ijece.v8i6.pp5333-5341.

[37]. da Silva, L. F., & Lima, J. V. F. (2021). An
evaluation of Cassandra NoSQL database on a low-
power cluster. 2021 International Symposium on
Computer Architecture and High Performance
Computing Workshops (SBAC-PADW), 9–14.
Doi: 10.1109/SBAC-PADW53941.2021.00012.

[38]. Velasquez, R., Rodriguez, F., Vargas Martin, M., &
Ponce, J. (2020). Mapping of the Transportation
System of the City of Aguascalientes Using GTFS
Data for the Generation of Intelligent Transportation
Based on the Smart Cities Paradigm, 177–185. In
Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A.,
Montiel Díaz, P. (eds) Advances in Emerging Trends
and Technologies. ICAETT 2019. Advances in
Intelligent Systems and Computing, 1066. Springer,
Cham. Doi: 10.1007/978-3-030-32022-5_17.

https://www.tibco.com/products/tibco-spotfire
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/

TEM Journal. Volume 12, Issue 4, pages 2583-2592, ISSN 2217-8309, DOI: 10.18421/TEM124-70, November 2023.

2592 TEM Journal – Volume 12 / Number 4 / 2023.

[39]. Wessel, N., & Widener, M. J. (2017). Discovering
the space–time dimensions of schedule padding and
delay from GTFS and real-time transit data. Journal
of Geographical Systems, 19(1), 93–107.
Doi: 10.1007/s10109-016-0244-8.

[40]. Q. Zervaas. (2014). The Definitive Guide to GTFS:
Consuming open public transportation data with the
General Transit Feed Specifcation (1st ed). Gtfsbook.
Retrieved from:
http://gtfsbook.com/gtfs-book-sample.pdf
[accessed: 19 June 2023].

[41]. Fortin, P., Morency, C., & Trépanier, M. (2016).
Innovative GTFS data application for transit network
analysis using a graph-oriented method. Journal of
Public Transportation, 19(4), 18-37.
Doi: 10.5038/2375-0901.19.4.2.

[42]. Mustafa Alzaidi, Aniko Vagner. (2021). Trip
Planning Algorithm For Gtfs Data With Nosql
Structure To Improve The Performance. Journal of
Theoretical and Applied Information Technology,
99(10), 2290–2300.

http://gtfsbook.com/gtfs-book-sample.pdf

	1. Introduction
	2. Benchmarking
	3. GTFS Data
	4. Methodology
	4.1. Gtfs Trip Planning Database Interaction
	4.2. Redis GTFS Model
	4.3. MongoDB Model for GTFS Data

	5. Our Benchmarking Tool
	6. Benchmarking Results
	6.1. Settings
	6.2. Results

	7. Conclusion

