
TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

TEM Journal – Volume 12 / Number 3 / 2023. 1687

Students’ Communication Self-efficacy and Its
Impact on the Enhancement of Communication
Skills in Software Engineering Project Courses

Chamikorn Hiranrat P

1,2
P, Atichart Harncharnchai P

1
P, Chompunoot Duangjan P

3

P

1
PCollege of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand

P

 2
PCollege of Computing, Prince of Songkla University Phuket Campus, Phuket, Thailand

P

3
PFaculty of Liberal Arts and Management Sciences, Prince of Songkla University

Surat Thani Campus, Surat Thani, Thailand

Abstract – Developing the communication skills of
software engineering graduates to meet industry
requirements is a challenge for educators. This study
presents a project-based learning framework that
promotes students’ communication skills in a software
engineering project course. The questionnaire on self-
efficacy for software development (CSESD) was
designed for students’ self-assessment of their
confidence in communication skills. Findings indicate
that students’ CSESD increased significantly after the
course ended. Educators can apply the designed
framework to software development-related project
courses. The CSESD questionnaire can be used to
assess students' confidence in their communication
skills and assist educators in preparing students’
readiness before graduation.

Keywords – Communication, self-efficacy, project-
based learning, software engineering, PBL.

DOI: 10.18421/TEM123-50
35TUhttps://doi.org/10.18421/TEM123-50 U35T

Corresponding author: Chamikorn Hiranrat,
College of Arts, Media and Technology, Chiang
Mai University, Chiang Mai, Thailand
Email: 35TUjamikorn.hi@phuket.psu.ac.th U35T

Received: 24 March 2023.
Revised: 10 July 2023.
Accepted: 19 July 2023.
Published: 28 August 2023.

© 2023 Chamikorn Hiranrat, Atichart
Harncharnchai & Chompunoot Duangjan; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

Software development is a knowledge-intensive
process in which interaction, collaboration, and
information sharing among team members occur
throughout the development process [1].

With a strong emphasis on customer involvement,
agile development approaches such as Scrum have
been used as a software development over the past
few years. Several activities, including requirement
engineering, analysis, design, development, testing,
implementation, and project management, involve
intensive communication via documentation,
meetings, discussions, and presentations [2], [3]. In
software development, technical knowledge and
skills are important, but the inclusion of soft skills is
essential for being professional. Previous research
indicated that soft skills, including motivation,
commitment, teamwork, and communication, are
required from graduates in software engineering (SE)
and information technology [4], [5], [6].

During study in universities, students have
practiced and developed their professional skills in
software project development. However, previous
surveys show that the communication skills of SE
graduates do not meet industry expectations [4], [7],
[8]. Student communication competence is related to
career development and communication self-efficacy
[9], [10], [11]. In self-efficacy theory, the belief in
one’s capability to perform a specific task is known
as self-efficacy [12], [13]. Performance achievement
is a source of self-efficacy based on personal mastery
experience and impacts behavior change [12]. The
achievement of project development assists students
in enhancing their mastery of software development.
The belief in communicating abilities when
performing software development tasks was defined
as communication self-efficacy for software
development [14].

mailto:jamikorn.hi@phuket.psu.ac.th
https://www.temjournal.com/
https://doi.org/10.18421/TEM123-50

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

1688 TEM Journal – Volume 12 / Number 3 / 2023.

Communication success while developing a project
utilizing abilities such as listening, discussing, and
interviewing clients could enhance students’
communication confidence. In computing education,
working on a software project helps students develop
both technical skills, such as how to use methods and
tools for software development, and soft skills, such
as problem-solving, teamwork, and communication
skills [15], [16]. The traditional methodology, such
as Waterfall model help students understand and
acquire skill throughout the software development
life cycle (SDLC). A modern software development
approach, Agile, has been introduced, and most Agile
methods such as Scrum and Extreme Programming,
are widely used in the software industry [17]. The
Scrum method [18] is suitable for PBL since Scrum
emphasizes people and collaborative activities
among teams and encourages students’ self-learning,
communication, and other soft skills [2], [19], [20].

Project-based learning (PBL) is commonly used in
higher education to develop employability skills [21].
The PBL environment encourages students to
combine technical and general skills through
teamwork, information sharing, and communication
to solve a problem case or scenario [2]. Applying
PBL in the SE project course, students work in
groups to develop a software project. They are
assigned roles as project manager, systems analyst,
programmer, and tester. Students could enhance their
communication skills, such as active listening and
communicating with clients or users to gather
requirements and design solutions; written
communication, such as SRS documents, manuals,
and test reports, is also typically used [22]. Oral
communication skills in discussions, meetings, and
presentations are also necessary to exchange
information among the team members throughout the
software development process [23]. Effective
communication allows timely feedback, facilitates
fast and correct decision-making, and transfers team
expertise [24]. Most of the tasks in Scrum require
communication among team members and
stakeholders. Therefore, students could gradually
develop their communication skills and increase their
confidence in communication through the software
process.

This study applied PBL for software development
using the Scrum method in a SE project course, with
an emphasis on communication activities. An
instrument for measuring students’ CSESD was
developed to measure students’ confidence in their
communication self-efficacy for software
development.

While previous research has demonstrated that
PBL improves students' communication abilities, the
measurement of communication self-efficacy
specifically for software development has been rare.
Surveys were conducted before and after the SE
project course to assess changes in students’ CSESD.
Furthermore, the result was compared with the
survey conducted in the SE project course that
applied a traditional software development process.

2. The SE Project Course Implemented the PBL

for Software Development Using Scrum

The “Project in Software Engineering” course is a

mandatory course in the undergraduate SE program
at the College of Computing, Prince of Songkla
University Phuket Campus in Thailand. This course
focuses on developing software projects throughout
the SDLC, and a traditional approach, the Waterfall
model, has been used. However, the agile approach
was more prevalent in software companies. Scrum is
one of the agile methodologies that emphasizes team
collaboration and requires extensive communication
between team members and stakeholders. Therefore,
the program committee has approved the use of
Scrum in the project course for the 2020 academic
year in order to prepare students for employment in
the software industry after graduation.

The PBL framework for software development
using Scrum of the SE project course was designed
to improve students' communication skills in a
senior-level SE project course. As illustrated in
Figure 1, the course includes three essential
components: the software development process,
learning outcomes, and learning activities.

2.1. Learning Outcomes

Learning outcomes in the SE curriculum are used
to evaluate whether students have acquired the
course’s information and skills. The SE program
curriculum identifies the learning outcomes of the SE
project course, which are listed in Table 1. Tasks
related to communication abilities in the software
development process were grouped to assess
communication self-efficacy for software
development. Students’ confidence in their software
development and communication skills, as well as
their ability to accomplish learning outcomes,
increases gradually as they complete tasks and
milestones throughout the project’s development.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

TEM Journal – Volume 12 / Number 3 / 2023. 1689

Figure 1. The PBL framework for software development of the SE project course

Table 1. Learning outcomes

Item Description
LO1 Criticize software engineering practices,

methods, tools, and techniques used in software
project development and why they were
selected.

LO2 Apply appropriate software engineering
processes, methods, and tools in developing and
managing a software project.

LO3 Develop a small software development project
from a real-world problem in a small group
within a given time frame.

LO4 Develop deliverables and artifacts in the
software process through successful
requirement engineering, design, development,
testing, maintenance, and evaluation such as a
project plan, SRS documents, prototypes, test
documents, product manuals, and software
product versions.

LO5 Communicate effectively in writing and orally
with peers, advisors, clients, and stakeholders
through a software process through interviews,
discussions, presentations, and documents.

LO6 Develop life-long learning ability through
continual reflection on the software
development life cycle and teamwork
procedures throughout the semester.

LO7 Manage learning and personal development,
including time management, and organizational
skill development.

LO8 Apply information and communication
technologies and techniques to search, evaluate,
and use scientific and technical information in
order to achieve project goals.

LO9 Demonstrate professional, ethical, legal,
security, and society-related issues with
responsibilities.

2.2. The Software Development Process

To simulate the software development process in a
near-real-world project, the software development
process was constructed based on Software
Development Life Cycle (SDLC) and Scrum
practices. In this course, the software development
process consists of three phases: project inspiration
phase, systems analysis and design phase, and
development and testing phase. Each phase includes
activities to help students attain the course’s learning
outcomes.

Phase 1: Project inspiration. Students are
encouraged to select a topic from their areas of
interest and understand the project’s significance.
During this phase, students investigate the problems,
interview users and stakeholders to understand the
causes of problems, define users’ problems clearly,
and brainstorm relevant solutions. Students may
choose one or more solutions to suggest to
customers. Then, students construct the initial
prototype and solicit user feedback to confirm that
the proposed solution effectively addresses user
issues. Storyboards are used to illustrate the project’s
objectives. The initial prototype is developed for
proof of concepts which is the milestone of this
phase.

Phase 2: System analysis and design. Students
capture user requirements in more detail and create
user stories, which are informal explanations of
software requirements from the end users’
perspectives. Students categorize and prioritize
software features based on user stories and estimate
development time and time to acquire new technical
knowledge and skills.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

1690 TEM Journal – Volume 12 / Number 3 / 2023.

Students then draft the system design and
architecture and write the Software Requirements
Specification (SRS) documents, a project plan, and a
project proposal. Students set up the project
development environment and configure software for
team collaboration and management. Students
develop the operational prototype, submit all
required documents, and present their work in the
proposal presentation, which is the milestone of this
phase.

Phase 3: Development and testing. Students
develop a sprint plan, test specifications, and a test
plan from user stories. Students set sprint goals,
develop software functions, test, get user feedback,
deliver artifacts according to the plan, and perform
sprint reviews at the end of each sprint. The software
beta version should be finished after 3-4 sprints.
Students then present their progress to the committee
by demonstrating the beta version of the software
project with some features and deliverables
according to the project plan. The progress
presentation is the third milestone of the SE project
course. Students then continue developing the
software according to the plans and conduct usability
and acceptance testing, including documents required
by each phase: software specification, system design,
test results, and manuals. All documents are
compiled into the project report and submitted to the
committee. The fourth milestone is the final project
presentation.

2.3. Learning Activities

Learning activities are designed to foster students’
communication for software development, including
team collaboration, retrospective feedback, and
formative assessments.

Team collaboration. Students formed groups of
two or three depending on the scale of the project to
enhance students’ communication skills. In the
Project inspiration phase, students in each team
interview stakeholders to understand the problem,
define the project’s goals, and draft a prototype for
testing with users. During the System analysis and
design phase, students are assigned roles and
responsibilities as business analysts, systems
analysts, user interface designers, and project
managers to prepare the required documents and
operational prototypes for the proposal presentation.
In the Development and testing phase, group
collaboration simulates the Scrum team, consisting of
a product owner, a Scrum master, and developers
[18]. In each sprint, the product owner and Scrum
master roles are rotated between team members. The
product owner is responsible for assigning priorities
to product backlog items and monitoring their status
during sprints.

The Scrum master supports team members and
assists in conflict resolution. Everyone is assigned
the developer role and is responsible for developing
software and delivering artifacts in accordance with
sprint plans. Working with a team in the PBL
environment encourages students to communicate
orally and in writing with other members.

Retrospective feedback. The objective of the sprint
retrospective is to develop solutions for enhancing
quality and productivity. In each sprint, The Scrum
team reports on the events of the previous sprint,
offers their evaluation and feedback, and considers
what went well, what concerns to emphasize, and
how to handle them. The most significant
enhancements to increase its efficiency are addressed
as soon as possible and adapted in the next sprint
[25], [26]. Continuous feedback from sprint
retrospectives promotes team performance and
customer satisfaction [27]. Students have a sprint-
ending retrospective meeting with their advisor
during the Development and Testing phase, which
consists of three to four sprints. The purpose of the
meeting is to discuss issues influencing the project
schedule and share what students have learned from
each sprint. Students report their work and reflect on
their successes and failures to team members.
Students receive feedback from their teams and
discuss the difficulties and their solutions. Then,
based on the difficulty and complexity of the tasks in
the backlog, students decide on the goals and
estimate the duration of the next sprint. Students are
also encouraged to record their learning in an online
logbook so that they can track their progress. The
sprint retrospective creates a team learning
atmosphere. The sprint retrospective feedback
facilitates students’ self-learning and knowledge-
sharing with others. Students could develop
communication skills such as active listening,
discussions, and presenting technical knowledge.

Formative assessments. The formative assessment
is acquiring information on student learning
throughout a course. This information is then used to
inform teaching and learning improvements [28].
Students have repeated opportunities to get feedback
on the project’s activities, tasks, and milestones
throughout the semester [19]. Students can learn
from the feedback and continue to revise their work
until they achieve project goals. The feedback
process of the formative assessments is vital for
effective self-directed learning and for enhancing
students’ professional skills. The purpose of
formative assessments is to assist students in
developing self-awareness and self-discipline and
enhancing their learning to meet course objectives
[29].

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

TEM Journal – Volume 12 / Number 3 / 2023. 1691

Evaluating students’ achievement using rubrics is
based on course activities and software process
deliverables, including weekly meetings with
advisers, sprint retrospectives, presentations, and
document writing.

Then, the course’s schedule was developed by
integrating the software development process,
learning outcomes, and learning activities into the
PBL environment.

2.4. The Course’ Schedule

The 17-week course was worth three credits.
Collaboration with users and teams to build small
software project with deliverables and documentation
needed 135 hours of student effort. Students were
required to complete in mandatory courses such as
requirement engineering, systems design,
programming, software configuration, software
project management, and software testing before
registering the project course. The project course did
not include formal lectures. Table 2 presents the SE
project course’s schedule.

Table 2. Course’ schedule

Week Activities
1 Workshop 1: Project inspiration (3hr.)

2 Workshop 2: Agile development: Scrum (3hr.)
3 Prepare project proposal.

4 Present project proposal.
5-7 Develop and test.
8 Progress presentation.

9-14 Develop and test.
15

16

Project presentation in the university annual
project showcase exhibition.
Submit project reports.

17 Present the final project.

Course activities arranged in the schedule related
to team collaboration, retrospective feedback, and
formative assessment activities throughout the
course. Students had to attend two workshops,
including “Workshop 1: Project inspiration” and
“Workshop 2: Agile development: Scrum” in the first
two weeks of the semester.

In the first workshop, course objectives, the course
schedule, activities, and expected learning outcomes
were presented to students. Students formed groups
of two or three and conducted research on businesses
or challenges that interested them. Students then
discussed with their team and selected a theme for
which they would create a software system. Students
were assigned to interview target users or
stakeholders related to the software project and
review the necessary literature or technology for
software development.

Students decided on the project topic and consulted
with SE lecturers regarding the project’s scope and
approval.

In the second week, the second workshop was held
to introduce the agile development approach and
Scrum. Students then collected and defined user
requirements and created a storyboard and sketched a
paper prototype to validate user requirements.
Students conducted user testing and revised
prototypes until acceptance was achieved. Students
drafted the project proposal during the third week.
Students produced user stories, estimated duration,
and prioritized them in order of importance. Then,
the system requirement specifications (SRS)
document, the system architecture, and
the system design were developed. Students
configured the system development environment to
develop an operational prototype. The project
proposal and all documents were submitted to the
committee. On the fourth week, students presented
the proposal to the committee for their approval.

Students worked with the team throughout the fifth
to seventh week to develop the software project by
creating a sprint plan and prioritizing the product
backlog. During sprint planning sessions, a student
was assigned the position of Scrum master, whereas
the adviser acted as product owner. According to the
plan, students developed the software project,
submitted code in a version control system, tested,
and produced deliverables. A sprint review meeting
and a retrospective were held at the ending of each
sprint to obtain feedback from the team and the
adviser.

In week eight, students demonstrate their software
development progress to the committee. The groups
that had not developed software in accordance with
the plan were considered for a project plan review
and scope adjustment. Until the fourteenth week,
students developed their software project in
accordance with the sprint plan and participated in
sprint reviews and retrospectives with the adviser. In
the week fifteen, students were given the opportunity
to present their project to software industry recruiters
and developers. Students submitted the final report in
week sixteen and presented the final project in the
last week of the semester.

The SE project course’s activities required students
to collaborate with their teams throughout the
software development process. Students received
feedback from peers, advisers, committees, and
software industry professionals. Throughout the
semester, retrospective feedback and formative
assessments happened during Sprint review
meetings, and presentations. These activities assist
students in acquiring software engineering
knowledge and communication skills necessary for
software development.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

1692 TEM Journal – Volume 12 / Number 3 / 2023.

3. Research Method

A project course implementing Scrum was
designed and implemented on the experimental group
in order to examine the effects of CSESD on the
enhancement of communication skills in software
development. To conduct a pretest and posttest for
the experiment, the CSESD self-assessment
questionnaire was developed. This study applied the
quasi-experimental research design. A one-group
pretest-posttest design was applied to the
experimental group to examine the differences in
students’ CSESD before and after the study. Then, a
non-equivalent control group design was employed
to examine the CSESD difference after studying the
project course between the experimental and control
groups, which applied the traditional software
development process. Descriptive statistics and the t-
test analysis were used to examine the results.

3.1. Instrument Development

The 32 items of communication self-efficacy for
software were collected from the previous literature
[30], [31], including communication skills required
for SE graduates and entry-level software
development jobs. The items relating to oral and
written communication abilities in general and
technical software development contexts were
measured on a 7-point Likert scale ranging from 1
(not confident at all) to 7 (absolutely confident), with
the respondent being instructed to “Please rate your
level of confidence (even if you have never done it
before) in your ability to” The questionnaire was
translated into Thai by an English-fluent professor
and back into English by another professor. We have
produced the questionnaires in two languages, Thai
and English, which have been reviewed by three
professionals who have taught software engineering
courses for at least five years to ensure their accuracy
and comprehension.

The content validity of the questionnaire was
examined by a committee consisting of two SE
professors and a software industry professional with
more than five-year experience. An index of item-
objective congruence (IOC) was evaluated using the
content validity. Eight items were eliminated.
Internal consistency was determined using a total of
24 valid items, each consisting of 12 oral and 12
written communication items, as shown in Table 3.

Table 3. Items of CSESD questionnaire

No. Item
O1 Listen to others and consider their thoughts.
O2 Communicate to an audience from other

countries or cultures.
O3 Explain precisely and accurately.
O4 Be nice to others, through words and tone.
O5 Develop the flexibility to communicate in

different roles within an organization.
O6 During discussion, treat others with respect (e.g.,

when giving an opinion, debating potential
solutions).

O7 Interview customers to gather requirements
O8 Interact with customers in prototyping user

experience and design ideas.
O9 Discuss and review of plans, processes, tools,

and issues with development team.
O10 Present technical information to groups and

solicit ideas is required to get feedback.
O11 Communicate via formal presentations to groups.

O12 Communicate via informal presentations to a
group

W1 Gathering information, summarizing, and
simplifying to others for decision making.

W2 Communicate via visuals (e.g., figures and
tables).

W3 Use e-mail and instant messaging appropriately
(e.g., read before sending, know when to talk in
person).

W4 Write formal documents, and use correct
terminology, spelling, and grammar most of the
time.

W5 Write in English fluently.
W6 Capture user requirements and notate with user

stories.
W7 Write formal requirements/specifications.
W8 Craft scenarios, storyboards, information

architectures, features and interfaces.
W9 Write detailed programming specifications after

analyzing business requirements for system
subcomponents.

W10 Communicate via code comments and check-in
notes.

W11 Write and organize the source code for reading
and comprehending easily to modify, extend, or
rewrite software easily.

W12 Produce test specifications, test plan, test
manuals, and test results required writing skills.

The questionnaire was tried out with thirty senior

students to determine the reliability of the
questionnaire items. Overall, the questionnaire’s
Cronbach’s alpha coefficient was 0.953.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

TEM Journal – Volume 12 / Number 3 / 2023. 1693

The computed alpha values for self-efficacy in oral
and written communication were 0.93 and 0.91,
respectively. According to Cronbach (1951),
Cronbach’s alpha for all items surpassing 0.70
indicated the acceptability of the questionnaire [32].

3.2. Data Collection and Participants

Data collection was performed in the software
engineering program at a university in Thailand. The
control group consisted of seniors majoring in SE
who enrolled in the SE project course during the first
semester of 2019 and developed their projects using a
traditional software approach, the Waterfall model.
At the end of the semester, students were requested
to complete the CSESD questionnaire as a posttest or
post-study. The experimental group consisted of
senior SE students enrolled in the SE project course
during the first semester of the 2020 academic year.
Students were asked to complete the CSESD
questionnaire before and after studying the project
course.

According to the curriculum requirements, all
students had already enrolled in mandatory SE
program courses, such as Requirement Engineering
and System Modeling, Software Configuration
Management, Software Verification and Validation,
and Software Project Management. Students formed
groups of three to develop small software projects.
Seven lecturers in the SE department served as
project advisors and committee members to assess
students’ learning accomplishment.

Participants were between the ages of 21 and 23. In
2019, 35 students enrolled in the project course, and
27 of them (or 77.1%) completed the questionnaires.
Seventeen students (63%) were male, and ten (37%)
were female. A total of 33 students registered for the
project course in the 2020 academic year, and 31 of
them (93.9%) completed the surveys. Twenty-three
(74%) of the students were male, while eight (26%)
were female.

4. Data Analysis and Results

Data from CSESD questionnaires were analyzed
using SPSS version 26. Table 4 provides descriptive
statistics of means and standard deviations for the
control group (post-study) and the experimental
group (pre-study and post-study). The graph in
Figure 2 illustrated the means of CSESD items.

According to Table 4, comparing means of CSESD
items between pre-study and post-study for the
experimental group, item O6 (“During discussion,
treat others with respect (e.g., when giving an
opinion, debating potential solutions).”) was rated as
having the highest confidence level (5.35) in the pre-
study, whereas item O1 was rated as having the
highest confidence level (6.0) in the post-study.

While item W5 (“Write in English fluently.”)
earned the lowest rating score in both pre-study and
post-study (3.52 and 4.06, respectively). Comparing
the post-study CSESD item means of the control and
experimental groups reveals that the confidence level
of item O1 (“Listen to others and consider their
thoughts.”) was rated as the highest by both groups
(5.70 and 6.00), while the confidence level of item
W5 (“Write in English fluently.”) was rated as the
lowest (4.07 and 4.06).

Table 4. Means and standard deviations in CSESD items
in control and experimental groups

Item

Control Gr.
(N=27)

Post-study

Experimental Gr.
(N=31)

Pre-study Post-study
Mean Std. Mean Std. Mean Std.

O1 5.70 1.137 5.26 1.154 6.00 0.816
O2 4.33 1.074 3.87 0.991 4.26 1.237
O3 4.33 1.177 4.06 0.854 4.61 0.761
O4 5.19 1.331 5.13 1.176 5.48 1.061
O5 4.96 1.255 5.03 1.140 5.39 0.844
O6 5.04 1.192 5.35 1.082 5.77 0.884
O7 4.85 1.199 4.45 1.060 5.16 1.036
O8 5.15 1.231 4.81 1.167 5.39 0.803
O9 4.89 1.155 4.84 1.036 5.16 0.934

O10 4.89 1.251 4.68 1.013 5.19 0.792
O11 4.85 1.134 4.68 1.107 5.29 0.938
O12 4.85 1.134 4.68 1.107 5.29 0.938
W1 4.93 1.269 4.71 1.039 5.19 0.749
W2 5.19 1.075 5.16 1.036 5.45 0.888
W3 5.15 1.064 4.84 1.157 5.52 0.851
W4 5.00 1.177 4.65 1.279 5.06 1.153
W5 4.07 1.385 3.52 1.262 4.06 1.413
W6 5.07 1.174 4.42 1.057 5.00 0.894
W7 4.96 1.192 4.45 0.961 5.45 0.810
W8 4.89 1.311 4.45 0.850 5.16 0.898
W9 4.56 1.251 4.26 0.815 5.00 0.730

W10 4.63 1.275 4.23 0.884 5.06 1.209
W11 4.44 1.251 4.10 1.136 4.87 0.846
W12 4.33 1.271 4.19 1.167 4.94 1.124

Figure 2. Means of CSESD items

Table 5 displays the pair sample t-test for pre-
study and post-study CSESD items for the
experimental group.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

1694 TEM Journal – Volume 12 / Number 3 / 2023.

The significance probability (p-value) of the
majority of items was below than the significance
level (0.05), indicating that there was a statistically
significant difference between the pre-study and
post-study of the CSESD results except for the item
O2 (“Communicate to an audience of persons from other
countries or cultures.”), O4 (“Be nice to others, through
words and tone.”), O5 (“Develop the flexibility to
communicate in different roles within an organization.”),
O6 (“During discussion, treat others with respect (e.g.,
when giving an opinion, debating potential solutions).”),
O9 (“Discuss and review of plan, process, tools, and
issues with development team.”), and W2 (“Communicate
via visuals (e.g., figures and tables).”). The t-test reveals
no statistically significant difference between the pre-
study and post-study means for these six CSESD
items, despite the fact that the post-study means are
higher.

Table 5. The test result of the pair sample t-test on the pre-
study and post-study of CSESD items of the experimental
group

Item t Sig.(2-
tailed)

 Item t Sig.(2-
tailed)

O1 3.268 .003 W1 2.540 .016
O2 1.931 .063 W2 1.393 .174
O3 2.882 .007 W3 3.087 .004
O4 2.006 .054 W4 7.905 .000
O5 1.827 .078 W5 5.343 .000
O6 1.938 .062 W6 2.568 .015
O7 3.406 .002 W7 4.947 .000
O8 2.816 .009 W8 4.383 .000
O9 1.541 .134 W9 4.004 .000

O10 2.633 .013 W10 4.055 .000
O11 3.058 .005 W11 4.353 .000
O12 3.058 .005 W12 3.338 .002

 N = 31, df = 30, p < .05

The CSESD items were divided into oral and

written communication groups, item O1-O12 and
item W1-W12, respectively. The means and standard
deviations of the oral, written, and overall CSESD
are presented in Table 6. The experimental groups’
post-study oral, written, and total CSESD ratings
were greater than the pre-study ratings. Comparing
the post-study means between the experimental and
control groups, the experimental group reported
greater levels of oral, written, and overall CSESD
confidence.

The paired sample t-test on the experimental group
was conducted. Table 7 reveals significant
differences of 0.000 (p < .05), indicating a
statistically significant difference between pre-study
and post-study oral, written, and overall CSESD
scores. The finding demonstrates that generally,
students’ confidence in their communication skills
for software development increased after completing
a project in the SE project course using Scrum.

Table 6. Means and standard deviations categorized by
communication types

Group Measurement Category Mean Std.
Control Post-study Oral 4.92 0.93
 Written 4.77 0.92
 Overall 4.84 0.87
Experi- Pre-study Oral 4.74 0.83
mental Written 4.41 0.79
 Overall 4.58 0.77
 Post-study Oral 5.25 0.52
 Written 5.06 0.48
 Overall 5.16 0.45

Table 7. The test result of the pair sample t-test on the pre-
study and post-study of CSESD of the experimental group

 Mean Std. t Sig.(2-
tailed)

Oral 0.51 0.66 4.31 0.00
Written 0.65 0.69 5.23 0.00
Overall 0.58 0.65 5.00 0.00

N = 31, df = 30, p < .05

The t-test on independent samples was used to
assess the mean difference between the control and
experimental groups. The result in Table 8 shows
that the significance levels of oral, written, and
overall CSESD were 0.111, 0.141, and 0.102,
respectively. A p-value greater than 0.05 indicates
that the means of CSESD in control and experimental
groups are not significantly different.

Table 8. Test result of the independent sample t-test on
CSESD post-study of the control and experimental groups

Levene’s Test
for Equality
of Variances

t-test for
Equality of Means

F Sig. t

Sig. (2-
tailed)

Std.
Error

Oral 7.322 0.009 1.629 0.111 0.20
Written 4.613 0.036 1.503 0.141 0.20
Overall 5.323 0.025 1.677 0.102 0.19

p < .05

According to the results, the experimental group
acquired confidence in their software development
communication skills. However, there is room for
improvement. Students working with their classmates
may not gain confidence in their oral communication
skills in software development, as presented in Table
5. The results may differ if students build a real-
world project or interact directly with real clients. In
addition, the finding in Table 4 suggests that the
faculty should provide strategies for enhancing
students’ English writing skills to increase their
confidence when graduating.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

TEM Journal – Volume 12 / Number 3 / 2023. 1695

Comparing the post-study CSESD means of the
control and experimental groups, the results in Table
8 indicate no statistically significant differences.
However, Table 6 shows that students in the
experimental group, who applied the Scrum
methodology, rated their confidence in
communication skills higher than those in the control
group that used the Waterfall model. Different
software development processes implemented in the
project course require different activities and
communication tasks. Students in the control group
developed a software project based on the Waterfall
model with five primary phases: requirements,
analysis, design, development, and testing. The
performance evaluation focused on artifacts and
reports generated in each phase, software product
completion, and project presentations. The
experimental group used Scrum, an incremental
model that divides the process into sprints. Scrum
requires additional engagement between team
members and stakeholders during sprints for
planning, sprint reviews, and retrospective meetings.
In each sprint, students participated in activities and
received continuous feedback for improvement in the
next sprint. Students’ communication skills could
continuously improve throughout the development
process, leading to enhancing their CSESD.

5. Conclusion

In this study, a software engineering project course

implementing the PBL for software development
using Scrum was presented. The CSESD self-
assessment instrument was developed to evaluate
students’ confidence in oral and written
communication skills for software development. The
results indicate that the course improves CSESD
among course participants. This study has
contributed to SE education research as it provides a
guide for conducting PBL courses or training for
software development project courses emphasizing
communication activities. In addition, the CSESD
questionnaire allows students to assess their
confidence in their software development-related
communication skills Instructors can use the results
from the self-assessment to guide the improvement
of students’ communication skills in which they lack
confidence in order to prepare them for careers in SE
following graduation.

The limitation of this study is the relatively small
sample size in a single SE program. Each SE
program has its own set of learning outcomes.
Implementing the course in other SE programs or
increasing the number of participants may yield
different consequences. Future studies may focus on
integrating the courses with industry partnerships.

Students can benefit from industry collaboration to
improve CSESD by communicating with real clients
and stakeholders. The complexity of real-world
problems might challenge students to acquire
knowledge and skills for solutions. Expanding the
project scope with more complicated problems
necessitates a larger team within a limited timeframe.
We could break the project into sub-projects and
employ two or three teams responsible for different
functionalities. Students would collaborate with
greater effort on integration, project management,
and communication with clients and other teams.
Based on student learning assessment data and
industry feedback, we could improve the course to
better prepare students for employment.

References:

[1]. Giuffrida, R., & Dittrich, Y. (2015). A conceptual

framework to study the role of communication
through social software for coordination in globally
distributed software teams. Information and Software
Technology, 63, 11–30.

[2]. Chassidim, H., Almog, D., & Mark, S. (2018).
Fostering soft skills in project-oriented learning
within an agile atmosphere. European Journal of
Engineering Education, 43(4), 638–650.

[3]. Kluender, J., Unger-Windeler, C., Kortum, F., &
Schneider, K. (2017). Team meetings and their
relevance for the software development process over
time. 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),
313–320.

[4]. Garousi, V., Giray, G., Tuzun, E., Catal, C., &
Felderer, M. (2020). Closing the gap between
software engineering education and industrial needs.
IEEE Software, 37(2), 68–77.

[5]. Hiranrat, C., & Harncharnchai, A. (2018). Using text
mining to discover skills demanded in software
development jobs in Thailand. Proceedings of the 2nd
International Conference on Education and
Multimedia Technology, 112–116.

[6]. Wang, X., Lin, X., & Hajli, N. (2019). Understanding
software engineers’ skill development in software
development. Journal of Computer Information
Systems, 61(2), 108–117.

[7]. Stevens, M., & Norman, R. (2016). Industry
expectations of soft skills in IT graduates: A regional
survey. Proceedings of the Australasian Computer
Science Week Multiconference, 1–9.

[8]. Exter, M., Caskurlu, S., & Fernandez, T. (2018).
Comparing computing professionals’ perceptions of
importance of skills and knowledge on the job and
coverage in undergraduate experiences. ACM
Transactions on Computing Education, 18(4), 1-29.

[9]. Anderson, C. B., Lee, H. Y., Byars-Winston, A.,
Baldwin, C. D., Cameron, C., & Chang, S. (2016).
Assessment of scientific communication self-efficacy,
interest, and outcome expectations for career
development in academic medicine. Journal of Career
Assessment, 24(1), 182–196.

TEM Journal. Volume 12, Issue 3, pages 1687-1696, ISSN 2217-8309, DOI: 10.18421/TEM123-50, August 2023.

1696 TEM Journal – Volume 12 / Number 3 / 2023.

[10]. Gaffney, A. L. H. (2011). Measuring students’ self-
efficacy for communication. International Journal of
Art & Design Education, 30(2), 211–225.

[11]. Song, Y., Yun, S. Y., Kim, S.A., Ahn, E.K., & Jung,
M. S. (2015). Role of self-directed learning in
communication competence and self-efficacy. Journal
of Nursing Education, 54(10), 559–564.

[12]. Bandura, A. (1977). Self-efficacy: Toward a
unifying theory of behavioral change. Psychological
Review, 84(2), 191–215.

[13]. Bandura, A. (1986). The explanatory and predictive
scope of self-efficacy theory. Journal of Social and
Clinical Psychology, 4(3), 359–373.

[14]. Hiranrat, C., Harncharnchai, A., & Duangjan, C.
(2021). Theory of planned behavior and the influence
of communication self-efficacy on intention to pursue
a software development career. Journal of
Information Systems Education, 32(1), 40–52.

[15]. Pérez-López, M. C., González-López, M. J., &
Rodríguez-Ariza, L. (2019). Applying the social
cognitive model of career self-management to the
entrepreneurial career decision: The role of
exploratory and coping adaptive behaviours. Journal
of Vocational Behavior, 112, 255–269.

[16]. Souza, M., Moreira, R., & Figueiredo, E. (2019).
Students perception on the use of project-based
learning in software engineering education.
Proceedings of the XXXIII Brazilian Symposium on
Software Engineering, 537–546.

[17]. 15th Annual State of Agile Report. (2021). Digital.ai.
Retrieved from:
https://digital.ai/resource-center/analyst-reports/15th-
state-of-agile-report/ [accessed: 02 February 2023].

[18]. Schwaber, K., & Beedle, M. (2002). Agile software
development with Scrum. Prentice Hall.

[19]. Magana, A., Seah, Y. Y., & Thomas, P. (2018).
Fostering cooperative learning with Scrum in a semi-
capstone systems analysis and design course. Journal
of Information Systems Education, 29(2), 75–92.

[20]. Paasivaara, M., Vanhanen, J., & Lassenius, C.
(2019). Collaborating with industrial customers in a
capstone project course: The customers’ perspective.
2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering
Education and Training (ICSE-SEET), 12–22.

[21]. Fitzsimons, J., & Turner, R. (2013). Integrating
project‐based learning into an undergraduate
programme using Web 2.0 and videoconferencing.
Journal of Applied Research in Higher Education,
5(1), 129–140.

[22]. Misnevs, B., & Demiray, U. (2017). The role of
communication and meta-communication in software
engineering with relation to human errors. Procedia
Engineering, 178, 213–222.

[23]. Ahmed, F., Fernando Capretz, L., Bouktif, S., &
Campbell, P. (2012). Soft skills requirements in
software development jobs: A cross‐cultural empirical
study. Journal of Systems and Information
Technology, 14(1), 58–81.

[24]. Bjarnason, E., Wnuk, K., & Regnell, B. (2011).
Requirements are slipping through the gaps—a case
study on causes & effects of communication gaps in
large-scale software development. 2011 IEEE 19th
International Requirements Engineering Conference,
37–46.

[25]. Andriyani, Y., Hoda, R., & Amor, R. (2017).
Reflection in agile retrospectives. In Agile Processes
in Software Engineering and Extreme Programming:
18th International Conference, XP 2017, Cologne,
Germany, May 22-26, 2017, Proceedings 18 (pp. 3-
19). Springer International Publishing.

[26]. Schwaber, K., & Sutherland, J. (2020). The Scrum
Guide. ScrummGuides. Retrieved from:
https://scrumguides.org/docs/scrumguide/v2020/2020
-Scrum-Guide-US.pdf
[accessed: 21 February 2023].

[27]. Kortum, F., Klünder, J., & Schneider, K. (2019).
Behavior-driven dynamics in agile development: The
effect of fast feedback on teams. 2019 IEEE/ACM
International Conference on Software and System
Processes (ICSSP), 34–43.

[28]. Cifrian, E., Andrés, A., Galán, B., & Viguri, J. R.
(2020). Integration of different assessment
approaches: Application to a project-based learning
engineering course. Education for Chemical
Engineers, 31, 62–75.

[29]. Hassan, O. A. B. (2011). Learning theories and
assessment methodologies – an engineering
educational perspective. European Journal of
Engineering Education, 36(4), 327–339.

[30]. Ruff, S., & Carter, M. (2009). Communication
learning outcomes from software engineering
professionals: A basis for teaching communication in
the engineering curriculum. 2009 39th IEEE Frontiers
in Education Conference, 1–6.

[31]. Ahmad, M. O., Lenarduzzi, V., Oivo, M., & Taibi,
D. (2018). Lessons learned on communication
channels and practices in agile software development.
2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), 929–938.

[32]. Cronbach, L. J. (1951). Coefficient alpha and the
internal structure of tests. Psychometrika, 16(3), 297-
334.

https://digital.ai/resource-center/analyst-reports/15th-state-of-agile-report/
https://digital.ai/resource-center/analyst-reports/15th-state-of-agile-report/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

