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Abstract – Local polynomial trend models are a 
special class of state-space models that can be used 
without having the full information about the process 
under study, since most of their parameters are 
embodied in the state vector and estimated 
immediately. This makes them attractive for use in 
signal processing. The present work considers 
problems that arise when using a polynomial model 
with a local quadratic trend for Bayesian fusion of two 
humidity sensors. The unknown sensor biases make it 
impossible for the model to satisfy the observability 
conditions. There is currently no general solution to 
this problem. To overcome this difficulty, an approach 
is presented where the humidity measurement result 
implicitly includes the bias of one of the sensors.  

The results of the study can be used to fuse quantities 
other than humidity when two or more sensors are 
available. 

Keywords – humidity, sensor fusion, bias, Kalman, 
polynomial, model. 

1. Introduction

Nowadays, autoregressive integrated moving-
average (ARIMA) models [1] are one of the most 
commonly used to describe changes in environmental 
factors.  
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ARIMAs effectively capture the temperature and 
humidity course and provide a forecast with a small 
mean square error [2], [3]. Air quality [4], [5] and the 
levels of air pollutants such as carbon monoxide 
(CO), nitric oxide (NO), nitrogen dioxide 
(NOR2R), sulphur dioxide (SOR2R), ozone (OR3R) and 
particulate matter [6],[7],[8], as well as the 
concentrations of pollen responsible for seasonal 
allergies [9], [10] have been successfully monitored 
by means of these models. 

Typically, any stochastic process, and hence the 
one described by an ARIMA model, can be 
represented as the sum of two principal components 
[11]: a signal (trend) that describes a smooth 
underlying mean and a residual component, often 
considered as noise. Local Polynomial trend Models 
(PM) [12], [13] belong to this group. They have a 
number of unique properties that make them 
particularly suitable for representing different types 
of temporal data: 

-PM describe a stochastic process with a 
polynomial trend. According to the Weierstrass 
theorem, any smooth curve (signal) defined on a 
finite interval can be arbitrarily well approximated by 
a polynomial [12]. In other words, in a short period 
of time for any ARIMA process, a PM with a similar 
trend can be found. 

-PM is a linear model, but it can be used to 
approximate nonlinear stochastic processes. 

-PM models have a unique state space 
representation where most of the model parameters 
are embodied in the state vector. The description of 
the classical ARIMA model includes three order 
parameters, 𝑛𝑝, 𝑛𝑑 and 𝑛𝑞, which respectively define 
the number of autoregressive terms (AR), the number 
of differentiations applied and the number of moving 
average (MA) terms in the model, the 𝑛𝑝 + 𝑛𝑞 
coefficients associated with the AR and MA terms of 
the model and the variance of the innovation white 
noise [1]. In PM there is a parameter (𝑛 − 1) 
defining the order of the polynomial model where 𝑛 
is the size of PM state vector and two other 
parameters known as the measurement noise 
intensity 𝑟 and the process noise intensity 𝑞 [12]. 
This greatly simplifies and even eliminates the need 
for PM identification.  
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In this paper, a discrete model with a local 
quadratic trend, also known as a second-order 
polynomial model ((𝑛 − 1) =2), is used to model 
stochastic processes [12]: 

(1) 

where 𝑘𝑘 =1, 2, ... is the discrete time, 𝜏𝜏 is the 
sampling period, 𝒛𝒛𝑘 is the process state vector, 𝑪𝒛𝒛𝑘 
and 𝑦𝑦𝑘 are the process-induced signal and its 
observation, 𝜻𝜻𝑘 and 𝜂𝜂𝑘 are white noises with zero 
mean and covariance matrices 
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and 
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, 𝑟 > 0 (3) 

The above mentioned features have increased the 
interest in PM models and their use in signal 
processing. This work considers the possibilities and 
proposes solutions to problems that arise when using 
a polynomial model with a local quadratic trend as an 
element of a Bayesian approach to humidity sensor 
fusion. 

2. A Bayesian Approach to Sensor Fusion

The main challenge in designing a multi-sensor 
system is to choose an appropriate way to combine 
(fuse) the information from the sensors so that the 
final result is better than that obtained by using the 
same sensors individually [14], [15]. When it comes 
to extracting information from raw sensor data, 
which is generally imprecise, incomplete and 
uncertain probabilistic approaches and in particular 
Bayesian inference [16], [17] can be quite useful. 

Assume that the measurement system (shown in 
Figure 1) is composed of two sensors 𝑆1 and 𝑆2 (the 
superscript denotes the sensor number) that monitor 
the same process MP: 

𝑦𝑦𝑘1 = 𝑓1�𝑢𝑘,𝑣𝑘1� 
𝑦𝑦𝑘2 = 𝑓2�𝑢𝑘,𝑣𝑘2� 
𝑢𝑘 = 𝑢(𝒙𝑘) 

(4) 

where 𝑦𝑦𝑘1, 𝑦𝑦𝑘2 are available scalar sensor readings 
obtained from the first and second sensors 
respectively, 𝑓1 and 𝑓2 are functions representing 

the measurement process models, 𝒙𝑘 is a real-valued 
𝑛-dimensional vector that describes some useful 
information about the process MP (In general, 𝒙𝑘 can 
be augmented with variables, that are not related to 
MP but affect sensor readings, e.g. sensor biases), 𝑢𝑘 
is the input signal to the sensors, and 𝑣𝑘1, 𝑣𝑘2 are 
scalar zero-mean white noises (measurement noises).  

Figure 1.  Block diagram of a measurement system with 
two sensors. The sensors 𝑆1 and 𝑆2 receive the signal 𝑢𝑘 
produced by the state 𝒙𝑘 of the monitored process MP. 
The fusion block FB executes an algorithm to compute 

an estimate 𝒙 hat of this state from the sensor 
measurements y𝑘1 and 𝑦𝑦 y𝑘2.   

The state 𝒙𝑘−1 evaluates to 𝒙𝑘 according to the 
equation: 

𝒙𝑘 = 𝑔(𝒙𝑘−1,𝒘𝑘−1) (5) 
where 𝑔 is a function representing the state transition 
model, and 𝒘𝒌−𝟏 is an 𝑛-dimensional zero-mean 
white noise vector (process noise). Let us denote the 
measurement sequences obtained from the sensors as 
follows: 

𝑦𝑦1:𝑘
1 = �𝑦𝑦11,𝑦𝑦21, … ,𝑦𝑦𝑘1� 
𝑦𝑦1:𝑘
2 = �𝑦𝑦12,𝑦𝑦22, … ,𝑦𝑦𝑘2� 

(6) 

If 𝒙𝑘 is assumed to be a random variable, the data 
fusion problem can be viewed as a problem of 
estimating 𝑝(𝒙𝑘|𝑦𝑦1:𝑘

1 ,𝑦𝑦1:𝑘
2 ), a conditional probability 

that represents all knowledge about the state 𝒙𝑘 in 
probabilistic terms considering all observations up to 
time 𝑘𝑘. Usually, the solution of this problem is 
sought under the following two well-known 
assumptions in probability theory [18], [19]: 

-The sequence … , 𝒙𝑘−2 ,𝒙𝑘−1,𝒙𝑘 , … is a Markov 
process. This means that for each time step 𝑘𝑘, 
𝒙𝑘  depends only on 𝒙𝑘−1: 

𝑝�𝒙𝑘|𝒙𝑘−1,𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 � = 𝑝(𝒙𝑘|𝒙𝑘−1) (7) 
but not on the previous state history. 

-The measurements 𝑦𝑦𝑘1, 𝑦𝑦𝑘2 given the state 𝒙𝑘 are 
conditionally independent: 
𝑝�𝑦𝑦𝑘1,𝑦𝑦𝑘2�𝒙𝑘,𝑦𝑦1:𝑘−1

1 ,𝑦𝑦1:𝑘−1
2 � = 𝑝(𝑦𝑦𝑘1�𝒙𝑘)𝑝(𝑦𝑦𝑘2�𝒙𝑘) (8) 
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This means that the current sensor readings do not 
depend on each other, nor on past states or past 
measurements. 

First, the current value of the state is estimated if 
only the measurements obtained at previous times are 
given. Considering (7), the law of total probability 
[20] 
𝑝(𝒙𝑘|𝑦𝑦1:𝑘−1

1 , 𝑦𝑦1:𝑘−1
2 )

= �
𝑝(𝒙𝑘|𝒙𝑘−1, 𝑦𝑦1:𝑘−1

1 , 𝑦𝑦1:𝑘−1
2 )

𝑝(𝒙𝑘−1|𝑦𝑦1:𝑘−1
1 , 𝑦𝑦1:𝑘−1

2 )𝑑𝒙𝑘−1
 (9) 

can be rewritten as 
𝑝�𝒙𝑘|𝑦𝑦1:𝑘−1

1 ,𝑦𝑦1:𝑘−1
2 �

= �𝑝(𝒙𝑘|𝒙𝑘−1)𝑝�𝒙𝑘−1|𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 �𝑑𝒙𝑘−1 
(10) 

The Probability Density Function (PDF) 
𝑝(𝒙𝑘|𝒙𝑘−1) is given by the equation of state (5) and 
the noise statistic 𝒘𝑘−1. Now the current 
measurements 𝑦𝑦𝑘1 and 𝑦𝑦𝑘2 are used to update the a 
priori probability (10). Using Bayes' theorem under 
condition (8) we get the following result [18], [19]: 
𝑝�𝒙𝑘|𝑦𝑦1:𝑘

1 ,𝑦𝑦1:𝑘
2 �

=
𝑝(𝑦𝑦𝑘1�𝒙𝑘)𝑝(𝑦𝑦𝑘2�𝒙𝑘)𝑝�𝒙𝑘|𝑦𝑦1:𝑘−1

1 ,𝑦𝑦1:𝑘−1
2 �

𝑝�𝑦𝑦𝑘1,𝑦𝑦𝑘2�𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 �
 

(11) 

where 𝑝�𝑦𝑦𝑘1,𝑦𝑦𝑘2�𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 � is a normalization 
constant calculated by 
𝑝�𝑦𝑦𝑘1,𝑦𝑦𝑘2�𝑦𝑦1:𝑘−1

1 ,𝑦𝑦1:𝑘−1
2 �

= �𝑝(𝑦𝑦𝑘1�𝒙𝑘)𝑝(𝑦𝑦𝑘2�𝒙𝑘)𝑝(𝒙𝑘|𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 )𝑑𝒙𝑘 
(12) 

Here the likelihood functions of the two sensors 
𝑝(𝑦𝑦𝑘1�𝒙𝑘) and 𝑝(𝑦𝑦𝑘2�𝒙𝑘) are defined by equations (4) 
and the known noise statistics 𝑣𝑘1, 𝑣𝑘2. Equation (10) 
together with equation (11) allows the new estimate 
𝑝�𝒙𝑘|𝑦𝑦1:𝑘

1 ,𝑦𝑦1:𝑘
2 � to be calculated recursively from the 

old estimate 𝑝�𝒙𝑘−1|𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 � and the new 
measurements 𝑦𝑦𝑘1, 𝑦𝑦𝑘2. 

In most cases, no closed form solution exists for 
the integrals (10) and (12), making the Bayesian 
estimation procedure difficult to apply in practice. 
One way to overcome this problem is to approximate 
𝑝(𝒙𝑘|𝒙𝑘−1), 𝑝(𝑦𝑦𝑘1�𝒙𝑘) and 𝑝(𝑦𝑦𝑘2�𝒙𝑘) with 
distributions obtained from linear Gaussian state and 
measurement models [19,21]: 

𝒙𝒌 = 𝑭𝑭𝒙𝑘−1 + 𝒘𝑘−1 
𝑦𝑦𝑘1 = 𝑯1𝒙𝑘 + 𝑣𝑘1 
𝑦𝑦𝑘2 = 𝑯2𝒙𝑘 + 𝑣𝑘2 

(13) 

where 𝑭𝑭 is the transition matrix of size (𝑛 × 𝑛), 𝑯1, 
𝑯2 are the measurement matrices of size (1 × 𝑛), 
𝒘𝑘−1~𝑁(0,𝑸), 𝑣𝑘1~𝑁(0,𝑅1) and 𝑣2𝑘~𝑁(0,𝑅2) are 
Gaussian noises, the initial state 𝒙0 is Gaussian 
𝒙0~𝑁(𝒙�0|0,𝑷0|0), the variables 𝑣11,𝑣21, … , 𝑣𝑘1, 
𝑣12,𝑣22, … , 𝑣𝑘2, the components of the vectors 

𝒘0,𝒘1, … ,𝒘𝑘−1 and the components of the state 𝒙0 
are mutually uncorrelated. In this case, the predicted 
and posterior PDFs of the state are equal to [21]: 

𝑝�𝒙𝑘|𝑦𝑦1:𝑘−1
1 ,𝑦𝑦1:𝑘−1

2 �~𝑁(𝒙�𝑘|𝑘−1,𝑷𝑘|𝑘−1) 
𝑝�𝒙𝑘|𝑦𝑦1:𝑘

1 ,𝑦𝑦1:𝑘
2 �~𝑁(𝒙�𝑘|𝑘,𝑷𝑘|𝑘) 

(14) 

where 
𝒙�𝑘|𝑘−1 = 𝑭𝑭𝒙�𝑘−1|𝑘−1 
𝑷𝑘|𝑘−1 = 𝑸𝑘−1 + 𝑭𝑭𝑷𝑘−1|𝑘−1𝑭𝑭𝑇 
𝒙�𝑘|𝑘 = 𝒙�𝑘−1|𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑯𝒙�𝑘|𝑘−1) 

𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 − 𝑲𝑘𝑯𝑷𝑘|𝑘−1 
𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑇�𝑯𝑷𝑘|𝑘−1𝑯𝑇 + 𝑹�−1 
𝒚𝒌 = (𝑦𝑦𝑘1 𝑦𝑦𝑘2)𝑇 

𝑯 = �𝑯
1 0

0 𝑯2� ,𝑹 = �𝑅
1 0

0 𝑅2
� 

(15) 

Algorithm (15), known as the Kalman Filter (KF), 
computes 𝒙�𝑘|𝑘 by minimizing the mean of squared 
Euclidean distance between the estimate value and 
the true value of the state vector given observations 
𝑦𝑦1:𝑘
1  and 𝑦𝑦1:𝑘

2 : 

𝐸 ��𝒙�𝑘|𝑘 − 𝒙𝑘�
𝑇�𝒙�𝑘|𝑘 − 𝒙𝑘�� 𝑦𝑦1:𝑘

1 ,𝑦𝑦1:𝑘
2 � (16) 

Thus, 𝒙�𝑘|𝑘 be considered as the result of sensor 
data fusion based on the concept that the best value 
of the state vector is its estimate in the Minimum 
Mean Squared Error sense (MMSE) [22], [23]. 
Intuitively simple and easy to implement, this 
approach is widely used in practice. 

In the following we will assume that the pair of 
matrices (𝑭𝑭,𝑯) is observable [24]: 

rank�

𝑯
𝑯𝑭𝑭
⋮

𝑯𝑭𝑭𝑛−1
� = 𝑛 (17) 

Satisfying this condition allows to obtain a unique 
estimate 𝒙�𝑘|𝑘 of the state based on the observations 
obtained by the sensors. 
 
3. Fusion of Humidity Sensors 

 
Advances in Micro-ElectroMechanical Systems 

(MEMS) technology have made it possible to create 
compact, accurate and robust humidity sensors that 
allow a measurement system to be built quickly and 
easily. In most cases, the MEMS humidity sensor is a 
single chip combining a capacitive sensing element 
and electronics. The electrodes of the sensing 
element are sealed with a polymer (e.g. polyimide) 
which can absorb or release water molecules from or 
into the environment. Any change in relative 
humidity affects the dielectric permittivity of the 
polymer and hence the capacitance of the sensing 
element. An electronic circuit detects these changes 
and converts them into a digital output signal.  
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Due to their good results, capacitive MEMS 
sensors are not only preferred, but have been adopted 
as one of the industry standards for humidity 
measurement.  

Capacitive MEMS humidity sensors are a special 
class of sensors, but like the others, their behaviour 
can be described reasonably well by the following 
equation [25], [26]: 

𝑦𝑦𝑘 = 𝑢𝑘 + 𝑒𝑘 + 𝑣𝑘 (18) 

In the following considerations, the sensor bias 𝑒𝑘 is 
assumed to be a random process close to a Random 
Walk (RW): 

𝑒𝑘 = 𝑒𝑘−1 + 𝜆𝑘−1 (19) 

where 𝜆𝑘−1 is Gaussian white noise with zero mean, 
and humidity 𝑢𝑘 is a signal generated by a 
polynomial process with a local quadratic trend. The 
latter means that the humidity can be represented as a 
linear combination of the components of the state 
vector 𝑧𝑘: 

𝑢𝑘 = 𝑪𝒛𝒛𝑘 (20) 
If we have two independent observations 𝑦𝑦𝑘1, 𝑦𝑦𝑘2 
obtained according to equation (18) taking into 
account (1) it can be written: 

𝒛𝒛𝑘 = 𝑨𝒛𝒛𝑘−1 + 𝜻𝜻𝑘−1 
𝑦𝑦𝑘1 = 𝑪𝒙𝑘 + 𝑒𝑘1 + 𝜂𝜂𝑘1 
𝑦𝑦𝑘2 = 𝑪𝒙𝑘 + 𝑒𝑘2 + 𝜂𝜂𝑘2 
𝑒𝑘1 = 𝑒𝑘−11 + 𝜆𝑘−11  
𝑒𝑘2 = 𝑒𝑘−12 + 𝜆𝑘−12  

(21) 

This system of equations can be reduced to the form 
(13), where: 

𝒙𝑘 = �
𝒛𝒛𝑘
𝑒𝑘1

𝑒𝑘2
� , 𝑭𝑭 = �𝑨 𝟎

𝟎 𝑰� ,     𝒘𝑘 = �
𝜻𝜻𝑘
𝜆𝑘1

𝜆𝑘2
�,  

 𝑯1 = (𝑪 1 0 ), 𝑯2 = (𝑪 0 1 ), 
  𝑣𝑘1 = 𝜂𝜂𝑘1 , 𝑣𝑘2 = 𝜂𝜂𝑘2 

(22) 

Here the vector 𝒙𝑘 contains the unknown sensor 
biases in addition to the state variables representing 
the humidity. Unfortunately, the determination of 𝒙𝑘 
by sensor fusion is impossible since the matrix pair 
(𝑭𝑭,𝑯) is unobservable [27], [28]. Let us try to find a 
solution to this problem by treating the sum of the 
actual humidity and the bias of one of the sensors, 
e.g. the first one, as some new humidity process 𝑢′𝑘: 

𝑢′𝑘 = 𝑢𝑘 + 𝑒𝑘1 
𝑢′𝑘 = 𝑪𝒛𝒛𝑘 (23) 

With two observations available, the equations (18), 
(1) and (23) lead to 

𝒛𝒛𝑘 = 𝑨𝒛𝒛𝑘−1 + 𝜻𝜻𝑘−1 
𝑦𝑦𝑘1 = 𝑪𝒛𝒛𝑘 + 𝜂𝜂𝑘1  
𝑦𝑦𝑘2 = 𝑪𝒛𝒛𝑘 + 𝑑𝑘 + 𝜂𝜂𝑘2 
𝑑𝑘 = 𝑑𝑘−1 + 𝜆𝑘−1 

(24) 

where 𝑑𝑘 = 𝑒𝑘2 − 𝑒𝑘1 and 𝜆𝑘 = 𝜆𝑘2 − 𝜆𝑘1 . The system  
(24) can be written in the form (13) where 

𝒙𝑘 = �
𝒛𝒛𝑘
𝑑𝑘
� , 𝑭𝑭 = �𝑨 𝟎

𝟎 1� , 𝒘𝑘 = �𝜻𝜻𝑘𝜆𝑘
�, 

𝑯1 = (𝑪 0), 𝑯2 = (𝑪 1), 𝑣𝑘1 = 𝜂𝜂𝑘1 ,
𝑣𝑘2 = 𝜂𝜂𝑘2 

(25) 

The model (13) with the matrices (25) is now 
observable. This means that 𝒙𝑘 (respectively 𝒛𝒛𝑘 and 
𝑢′𝑘) can be estimated by fusing the information from 
the two observations with the algorithm (13). 
Unfortunately, the humidity 𝑢𝑘′  obtained in this way 
is different from the true humidity 𝑢𝑘, but this is 
acceptable from a practical point of view. According 
to (23), the difference between 𝑢𝑘′  and 𝑢𝑘 is 
determined by the bias 𝑒𝑘1 of the first sensor S1. 
Therefore, applying any known technique to reduce 
the systematic error of S1 (e.g. sensor calibration) 
will make the fusion result closer to the actual 
humidity value. 

An additional advantage of the proposed approach 
is its ability to estimate the discrepancy 𝑑𝑘. By 
combining (13) with various safety mechanisms that 
use 𝑑𝑘 to detect sensor faults, it is possible to build 
fail-safe sensor fusion algorithms with high 
reliability. 
 
4. Practical Aspects of Humidity Sensor Fusion 

with Kalman Filter 
 

Let 𝑑1:𝑘−1 = {𝑑1,𝑑2, … ,𝑑𝑘−1} denote the 
sequence of discrepancy values 𝑑𝑖, 𝑖 = 1,2, … ,𝑘𝑘 − 1. 
In the Kalman filter framework, the conditional 
mathematical expectation: 

𝐸[𝑑𝑘|𝑑1:𝑘−1] = 𝐸[𝑑𝑘−1|𝑑1:𝑘−1]
+ 𝐸[𝜆𝑘|𝑑1:𝑘−1] (26) 

is taken to be the best estimate �̂�𝑘|𝑘−1 of the 
discrepancy at time 𝑘𝑘 given all data up to (𝑘𝑘 − 1). 
Since the discrepancy 𝑑𝑘−1 is fully known at time 
(𝑘𝑘 − 1), 𝐸[𝑑𝑘−1|𝑑1:𝑘−1] = 𝑑𝑘−1, and the mean of 
the white noise is zero, 𝐸[𝜆𝑘|𝑑1:𝑘−1] = 0 from (26) 
immediately follows: 

�̂�𝑘|𝑘−1 = 𝑑𝑘−1 (27) 

If 𝑑𝑘 remains constant, the predicted value will 
coincide with the true value. If 𝑑𝑘 changes over time, 
there will be a difference between the predicted value 
and the true value, known as the prediction error: 

Δ𝑑𝑘 = 𝑑𝑘 − �̂�𝑘|𝑘−1 = 𝑑𝑘 − 𝑑𝑘−1 (28) 
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For large error values (highly variable 
discrepancy), the prediction model (27) is ineffective 
and the Kalman filter fails to accurately estimate the 
state variables. Using experimental data obtained 
from SHT31-DIS sensors, it is found that the filter 
works well when the prediction error 𝛥𝑑𝑘 does not 
exceed ±0,01 RH%. How this constraint affects the 
design of a multi-sensor fusion system with similar 
sensors can be clarified using a model of SHT31-DIS 
[30]: 

𝑦𝑦𝑘 = 𝑓𝑦𝑦𝑘−1 + (1 − 𝑓)𝑢𝑘−1 + 𝑣𝑘−1 (29) 
where 𝑓 = 𝑒−𝑇/𝜏, 𝑇 = 6,29 s is the time constant of 
the model, 𝜏𝜏 =0,1 s is the sampling time. For two 
sensors with different parameters and biases, (29) 
gives: 
𝑦𝑦𝑘1 = 𝑓1𝑦𝑦𝑘−11 + (1− 𝑓1)[(1 + α𝑎1)𝑢𝑘−1 + 𝑏1]

+ 𝑣𝑘−11  
𝑦𝑦𝑘2 = 𝑓2𝑦𝑦𝑘−12 + (1− 𝑓2)[(1 + α𝑎2)𝑢𝑘−1 + 𝑏2]

+ 𝑣𝑘−12  

(30) 

where 𝑓1 = 𝑒−𝑇1/𝜏, 𝑓2 = 𝑒−𝑇2/𝜏, and 𝑇1, 𝑇2 denote 
the corresponding time constants of the models. 𝑏1, 
𝑏2 are the additive components of the sensor errors, 
𝑎1 and 𝑎2 are the values of the multiplicative 
components of the sensor errors at the end of the 
measurement range (when input humidity is 
100 %RH), 𝛼 =0,01 %RH-1. Equations (30) define a 
model of the discrepancy 
𝑑𝑘 = 𝑓2𝑦𝑦𝑘−12 + (1− 𝑓2)[(1 + α𝑎2)𝑢𝑘−1 + 𝑏2] 
−𝑓1𝑦𝑦𝑘−11 + (1− 𝑓1)[(1 + α𝑎1)𝑢𝑘−1 + 𝑏1] (31) 

which has been used to calculate the prediction error 
𝛥𝑑𝑘 for step changes in humidity between 10 RH% 
and 60 %RH. Table 1 shows some of the results 
obtained for cases where the difference δT1 and δT1 
 

Table 1.  Prediction error of the sensor discrepancy 
 

№ δT1 δT2 a1 a2 b1 b2 Δdk 
- % % %RH %RH %RH %RH %RH 
1 -5.00 5.00 2.50 -2.50 -2.50 2.50 -0.12 
2 -5.00 5.00 2.50 0.00 -2.50 1.25 -0.10 
3 -5.00 5.00 1.25 -1.25 -2.50 2.50 -0.10 
4 -5.00 5.00 0.00 -2.50 -1.25 2.50 -0.10 
5 -5.00 5.00 0.00 1.25 1.25 -2.50 -0.07 
6 -5.00 0.00 1.25 -1.25 -1.25 2.50 -0.06 
7 2.50 1.25 2.50 0.00 -2.50 1.25 -0.01 
8 2.50 1.25 0.00 -1.25 0.00 2.50 0.00 
9 1.25 2.50 -1.25 0.00 2.50 -1.25 0.00 

10 1.25 2.50 0.00 2.50 1.25 -2.50 0.01 
11 0.00 -5.00 -1.25 1.25 2.50 -2.50 0.06 
12 5.00 -5.00 1.25 0.00 -2.50 1.25 0.07 
13 5.00 -5.00 -2.50 0.00 2.50 0.00 0.10 
14 5.00 -5.00 -1.25 1.25 2.50 -2.50 0.10 
15 5.00 -5.00 0.00 2.50 1.25 -2.50 0.10 
16 5.00 -5.00 -2.50 2.50 2.50 -2.50 0.12 

 
Figure 2.  Signals applied to the sensor inputs. Here the 
humidity grows linearly from 10 %RH to 60 %RH with a 

rate ∆𝑢𝑘. 

 
Figure 3.  Output signal of sensor S1 for case 1. 

 
Figure 4.  The prediction error calculated for case 1 of 

Table 1 at different input signal rates ∆𝑢𝑘. 

 
Figure 5.  The prediction error calculated for case 16 of 

Table 1 at different input signal rates ∆𝑢𝑘. 

 
between the time constants 𝑇1, 𝑇2 and 𝑇 does not 
exceed ±5 % and the additive and multiplicative error 
components ±2,5 %RH, respectively. For most of 
these cases (1-6, 11-16), the prediction error is 
significantly larger than that for which Kalman filter 
work is possible (±0,01 RH%).  
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Again using (31) for the worst cases (1 and 16), 
Δ𝑑𝑘was calculated, but this time with a different rate 
of change of the input signal ∆𝑢𝑘. Figure 2 and 
Figure 3 depict the input and output sensor signals, 
and Figure 4 and Figure 5 depict the corresponding 
prediction errors. They show that when the rate of 
change of the input signal does not exceed 
1,38 %RHs-1, the magnitude of the prediction error is 
less than 0,01 RH% and sensor data fusion is 
possible.  

To validate the proposed sensor fusion, an 
experiment was carried out using sensors with the 
following parameters: 𝑇1 =6,07 s, 𝑎1 =2,07 %RH, 
𝑏1 =0,38 %RH, 𝑇2 =6,31 s, 𝑎2 =-2,04 %RH, 
𝑏2 =1,23 %RH. The output signals from the sensors 
are shown in Figure 6 and their rate of change is 
shown in Figures 7 and 8.  

 

 
Figure 6.  Response of sensors S1 and S2 to random 

changes in humidity. 

 
Figure 7.  Rate of change (ROC) of the output 𝑦𝑦1 of sensor 

𝑆1. The dark brown line represents the mean value. 

 
Figure 8.  Rate of change (ROC) of the output 𝑦𝑦2 of sensor 

𝑆2. The dark yellow line represents the mean value. 

The Kalman filter was started with the following 
polynomial model parameters (𝑛 − 1) =2, 
𝑞 =0,22 [%RH]2s-5, 𝑟1 =6,10-5 [%RH]2s and 
𝑟2 =1,10-3 [%RH]2s. The consistency of the Kalman 
filter was tested using two statistical tests [29]. First, 
the Normalized Innovation Squared (NIS) statistic 
was calculated: 

γ = �𝒚𝑘 − 𝑯𝒙�𝑘|𝑘−1�
𝑇�𝑯𝑷𝑘|𝑘−1𝑯𝑇 + 𝑹�−1 

�𝒚𝑘 − 𝑯𝒙�𝑘|𝑘−1� 
(32) 

and determined its lower critical value γ𝐿 =0,05 and 
upper critical value 𝛾𝐻 =7,38 at significance level  
  

 
Figure 9.  The normalized innovation squared (NIS) 

statistics. 

α =0,05. As can be seen from Fig. 9, the test is 
successful as only 56 out of 1200 points (4,3 %) are 
outside the acceptance region. The normalized 
autocorrelation statistic for the components δ1 and δ2 
of the innovation vector 𝒚𝑘 − 𝑯𝒙�𝑘|𝑘−1  

𝜌1(𝑘𝑘, 𝑙) =
∑ δ1(𝑘𝑘 + 𝑖)δ1(𝑙 + 𝑖)3
𝑖=0

�∑ [δ1(𝑘𝑘 + 𝑖)]23
𝑖=0 ∑ [δ1(𝑙 + 𝑖)]23

𝑖=0

 

𝜌2(𝑘𝑘, 𝑙) =
∑ δ2(𝑘𝑘 + 𝑖)δ2(𝑙 + 𝑖)3
𝑖=0

�∑ [δ2(𝑘𝑘 + 𝑖)]23
𝑖=0 ∑ [δ2(𝑙 + 𝑖)]23

𝑖=0

 
(32) 

and its thresholds ρ𝐿 =-0,98 and ρ𝐻 =0,98 at the 
significance level α =0,05 were then computed. In 
Figures 10 and 11 they are calculated for locations  
 

  
Figure 10.  Normalized autocorrelation statistics for the 

δ1 component of the innovation vector. 
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Figure 11.  Normalized autocorrelation statistics for the 
δ2 component of the innovation vector. 

 
where the humidity change reaches the maximum 
values. All four tests are successful as the number of 
outliers does not exceed 1 out of 50 (2 %). 

The standard deviation of the estimate of 𝑢′𝑘 
obtained by the filter in this case does not exceed 
0,012 %RH and is in most cases between 1,9 and 3,3 
times smaller than the standard deviation associated 
with the sensor measurements 𝑦𝑦𝑘1, 𝑦𝑦𝑘2. Recall that the 
Kalman filter is an optimal linear estimator [29]. In 
the context of its current use, this means that it is not 
possible to find another sensor fusion method where 
the linear combination of sensor measurements yields 
a result with a smaller error. 

The performance of the filter is shown in Figures 
12-15. The sensor discrepancy calculated by the filter 
is shown in Figure 12.  

 
Figure 12.  Plot of estimated humidity sensor discrepancy 

𝑑𝑘 over time. 

 
Figure 13.  Humidity 𝑢′𝑘 calculated by the filter and the 

measurements obtained from the sensors. 

 

In the time interval 72 s – 76 s its average value is 
approximately 1,71 %RH. This value has been used 
to shift the origin of the coordinate system in which 
the measurements obtained by the second sensor 𝑆2 
are shown (Figure 13). This makes it easy to see the 
scatter in the measurements (the area bounded by the 
dashed curves) caused by random sensor errors. The 
mean value of 𝑢′𝑘 and its uncertainty are shown in 
green. It has already been noted that the difference 
between the humidity 𝑢′𝑘 calculated by the filter and 
the actual humidity 𝑢𝑘 is determined solely by the 
systematic error of the first sensor 𝑆1. This can be 
clearly seen in Figure 14. Calibration of sensor 𝑆1 
solves this problem (Figure 15). 
 

 
Figure 14. Real humidity 𝑢𝑘 and humidity 𝑢′𝑘 calculated 

by the filter before calibration of sensor 𝑆1. 

 
Figure 15.  Real humidity 𝑢𝑘 and humidity 𝑢′𝑘 calculated 

by the filter after calibration of sensor 𝑆1. 

 
5. Conclusion 

 
Fusion of sensor signals is not a trivial task. 

Typically, signals are generated by non-stationary 
random processes, which implying that there is some 
relationship between their current and past values. 
Most classical fusion algorithms are static, since they 
combine observations from different sources 
obtained only at the present moment, but cannot use 
information from previous observations to improve 
the fusion result. The Bayesian approach is one of the 
few that provides a clear theoretical framework to 
address this problem.  
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This, together with the possibility of real-time 
implementation by a simple numerical procedure 
(Kalman filter), makes it a leading method for sensor 
fusion. 

The application of the Bayesian fusion approach 
implies the use of a discrete model in the state space. 
In the classical case, this means collecting 
information about the phenomenon in advance, then 
selecting a model and determining its parameters. 
Polynomial models are a special type of model that 
allows this process to be greatly simplified. Here, 
most of the model parameters are embodied in the 
state vector and estimated in real time from the 
incoming data, while the remaining parameters 
(model order, process and measurement noise 
intensities) are adjusted in the Kalman filter tuning 
process. The results of the present study fully 
confirm the applicability of this procedure when a 
polynomial model with a local quadratic trend is used 
to represent humidity sensor signals. 

In general, Bayesian fusion with a Kalman filter 
assumes that all sensors are calibrated and the 
resulting observations are free of systematic errors. 
By augmenting the polynomial model of the signal 
with a random walk model of the sensor discrepancy, 
a solution is found where fusion is possible if only 
one of the sensors in the measurement system is 
calibrated. However, the use of a random walk model 
in this case imposes certain requirements on the 
sensors and the input signal, the performance of 
which guarantees the consistency of the estimates 
obtained by the Kalman filter. Theoretical analysis 
and experimental data show that when using SHT31-
DIS sensors with a time constant tolerance and a 
multiplicative error not exceeding ±5,0 % and 
±2,5 %RH respectively, normal operation of the 
Kalman filter is possible if the rate of change of the 
input signal (humidity) does not exceed 1,38 %RHs-1.  
This limitation is acceptable in many cases as it 
represents a situation where the humidity would 
increase from 0 RH% to 100 RH% in just over a 
minute. 

The results obtained provide a reason to define the 
combination of polynomial model and Bayesian 
fusion algorithm as a useful tool for the design of 
accurate, reliable and easy to implement and operate 
multi-sensor measurement systems. Presented as a 
solution to the problem of fusing two humidity 
sensors, this approach can be applied to any other 
measurand or number of sensors. 
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