
TEM Journal. Volume 12, Issue 1, pages 22-28, ISSN 2217-8309, DOI: 10.18421/TEM121-03, February 2023.

22 TEM Journal – Volume 12 / Number 1 / 2023.

Fast Shape-Preserving Method for Integrating
Polygon into Two-and-Half Dimensional

Triangulation

Bozhidar Stanchev 1, Hristo Paraskevov 1

1University of Shumen, Faculty of Mathematics and Informatics, 114 “Universitetska” str, Shumen, Bulgaria

Abstract – This paper presents an approach in
integrating polygons into a triangulation. The
motivation behind this work is to find a way to
overcome the lack of appropriate shape-preserving
methods for modifying 2.5D triangle meshes.

Widely used approaches for constructing
Constrained Delone Triangulation (CDT) work in two
steps: first constructing pure Delone triangulation, and
next inserting the line segments one-by-one into it [1],
[2], [3].

The presented method implements an effective mesh
data structure and a walking-on-mesh approach
allowing for fast polygon traversal looking for the
intersected edges of the 2.5D mesh. Instead of
reconnecting vertices or re-triangulating the affected
mesh area, we introduce new mesh vertices and
subdivide the mesh in order to integrate the polygon.
The technique also examines and enhances the aspect
ratios of the 2.5D triangles that are present in (and
near) the partitioned area while maintaining the shape.

Keywords – constrained Delone triangulation, mesh
data structure, mesh traversal, edge swapping, triangle
aspect ratio.

DOI: 10.18421/TEM121-03
https://doi.org/10.18421/TEM121-03

Corresponding author: Hristo Paraskevov,
University of Shumen, Faculty of Mathematics and
Informatics, 114 “Universitetska” str, Shumen, Bulgaria
Email: h.paraskevov@shu.bg

Received: 07 October 2022.
Revised: 07 December 2022.
Accepted: 13 January 2023.
Published: 27 February 2023.

© 2023. Bozhidar Stanchev, Hristo
Paraskevov; published by UIKTEN. This work is licensed
under the Creative Commons Attribution‐
NonCommercial‐NoDerivs 4.0 License.

The article is published with Open Access at
https://www.temjournal.com/

1. Introduction

The motivation behind the Constrained Delone
Triangulation (CDT) methods in general and the
presented approach in particular is their applications
in surface modeling, digital terrain modeling (DTM),
CAD applications and other areas that require
representation of the features of specific objects
(such as the elevation contours from topographic
maps, riversides, property lines, roadways, terrain
excavations, etc.). The CDT approaches are to make
sure that the triangulation topology incorporates
certain segments, i.e. to provide a way to integrate
into the triangulation the polygons used to model
objects features into the triangulation.

Delone Triangulation. The pure Delone Triangula-
tion (DT) [4], [5], [6] can be performed on any set of
positions on the plane. Provided there are no
coincident positions in the set or each coincidence is
considered a single position, it produces a
triangulation with the property that there are no other
vertices inside of any triangle's circumcircle, thus, it
is optimal in that it maximizes the smallest triangle
angle.

Constrained Delone Triangulation. In practice, it is
often necessary to guarantee topological
connectivity, that is, it is preferable for the generated
triangulation to provide a set of predetermined
segments (links between positions). It is obvious that
a pure DT cannot be obtained by triangulating a set
of both positions and segments. Still, the aim is the
same - to get an optimal triangulation that again
maximizes the minimum triangle angle (such that
improves aspect ratios of triangles as much as
possible) and such triangulation is referred as
Constrained Delone Triangulation (CDT). A more
exact definition states that the CDT of a mixed set of
positions and segments on the plane is such that the
circumcircle of no triangle contains any other
triangulation vertex in its interior that is visible from
all three of the triangles' vertices. Two vertices of a
triangulation are visible to one another if the line
segment they form does not intersect any of the
triangulation's edges.

https://doi.org/10.18421/TEM121-03

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

TEM Journal – Volume 12 / Number 1 / 2023. 23

2. Similar techniques

A variety of CDT algorithms is available. Their
conceptual descriptions are provided here only in
general terms.

The Divide-and-Conquer CDT methods [7]
subdivide the input set of points and segments into
smaller sub-sets. The triangulation of a small enough
sub-set becomes trivial. However, in doing it, the
complexity moves to how to combine the various
triangulated sub-sets into a single triangulation,
which is subsequently required. Apart from being
resource-consuming, the merging is too difficult to
implement which makes it the crucial part of such
CDT methods.

The Sweep-Line CDTs [8], [9] use a sweep-line
traveling from −∞ to +∞ (with respect to a chosen
direction - usually there is no reason to use a
direction other than one of the coordinate axes). First,
the input set is sorted according to the chosen sweep-
line movement direction. The triangulation below the
sweep-line is always complete and as the advancing
front moves, the triangulation is being gradually
enriched by integrating the next encountered
elements while making sure that the triangulation
complies with CDT requirements.

The Incremental CDT techniques [10], [11], [12],
[13] are popular and frequently utilized in practice
since they are easier to implement. Again, new
vertices and segments are gradually added to the
triangulation while making sure that the CDT criteria
are upheld. All known incremental CDTs proceed as
follows when incorporating a segment: first, all
triangle edges intersected by the segment are
detected; next, the intersected ones are removed from
the triangulation; and finally, the cavity (hole) that
emerges is then re-triangulated and integrated back
into the original triangulation.

Depending on how the points and segments are
integrated, CDT approaches can be classified in
another way. The Straightforward CDT methods
construct the triangulation using both the positions
and the segments simultaneously. The Post-
processing CDT methods split the process into two
steps - a first step that produces a pure DT of all
points, including the ends of the segments; and a
second step that "constrains" the triangulation by
gradually integrating all of the segments into it.

Most of the Incremental CDTs are implemented as
Post-processing CDTs. The algorithm of Shewchuk
and Brown [14] inserts a segment into the CDT in
time linear to the number of the necessary structural
changes (i.e. to the number of the edges the segment
intersects). First, all intersected edges are removed,
thus, opening a cavity in the triangulation; next, the
opening is re-triangulated and merged back.

The complexity is analyzed taking into account the
separate operations (detection of the intersected
edges, their removal, re-triangulation of the cavity).
Merging of a sub-triangulation back into the whole
triangulation rarely adds complexity as, in fact, most
often the cavity re-triangulation itself is implemented
as hole (cavity) filling directly in the overall
triangulation. Other Post-processing CDT methods
are presented by Agarwal et al. [2] and by Domiter
[13]. Again, they remove the triangle edges
intersected by the segment and re-triangulate the
hollow that was opened (similarly to the Shewchuk
and Brown's approach [14]).

Unlike the described Incremental CDTs, Stanchev
and Paraskevov [3] proposed an algorithm that does
not remove the triangle edges intersected by the
segment. Instead, it locally modifies the triangulation
by performing edge-swapping only. Segment
integration using this approach is always possible. As
demonstrated by Sleator et al. [16], the transition
between two different triangulations of the same set
of positions is possible through a series of edge-
swapping operations.

Frequently, the input set of positions and segments
include degenerate triangles or triangles with a poor
aspect ratio in their CDT (with nearly collinear
vertices). Even in the pure DT of a set of positions
(the Delone condition, which states that no triangle's
circumcircle contains any more vertices inside of it,
is always satisfied), an irregular sampling still could
lead to bad aspect ratio triangles. Constraining DT to
CDT by integrating the constraints coming from the
segments further degrades quality of the triangulation
(i.e. further worsens aspect ratios of the triangles).

To improve quality of the constructed CDT (and to
overcome the effect described above), there are
triangulation techniques that introduce regularizing
vertices in addition to the input positions and
segments. It comes to the so-called mesh refinement
methods. To make sure that the triangulation being
built meets specific requirements, regulatory vertices
are incorporated. The usual goal is to produce
triangles with acceptable aspect ratios throughout the
triangulation while keeping the number of triangles
as small as possible.

Ruppert's initial research on CDT refinement [17]
suggests an algorithm that produces a 2D CDT
triangulation of a set of positions and segments while
assuring that all triangle angles are between α and π-
2α, where α can be between 0 and 20 degrees. The
algorithm locally improves the CDT by introducing
new vertices in order to eliminate the thin triangles. It
splits triangles by introducing a new vertex at the
triangle's circumcenter or at the triangle's edge
midpoint. Each local improvement step involves both
insertion of new vertices and re-triangulation.

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

24 TEM Journal – Volume 12 / Number 1 / 2023.

А drawback of the proposed approach is that it
does not naturally adapt to curved input (set of
curves). Pav and Walkington [18] analyze the
Ruppert's splitting approach and the possible
improvements for the curved input cases and the
algorithm they suggest places a protective ball
around the acute corners. Boivin and Ollivier-Gooch
[19] also propose an extension of Ruppert’s
refinement for curved input. Another improvement
has been proposed by Miller et al. [15] that carries
out gradual CDT construction by incrementally
adding input points (and segments), "opening" the
impacted local triangulation area, eliminating all
triangles (edges), and re-triangulating the cavity that
opens.

Note that both the 2D and 2.5D CDT methods
operate on a planar domain. However, they are used
for 3D modeling as well by working on a multi-
domain defined by an initial (coarse) 3D mesh where
each mesh face defines a planar domain to generate a
2.5D CDT. Thus, in the context of the adjacent
domains (the mesh faces), all individual 2.5D CDTs
naturally merge into an overall 3D mesh.

As already mentioned, shape preservation is
problematic when integrating a line segment into a
2.5D CDT (which defines a 2.5D shape), since the
known CDT methods avoid introducing new vertices
by relying on changes in the mesh topology or local
re-triangulation in order to do the integration, which
could, however, greatly affect the shape. Instead of
re-triangulating the affected 2.5D mesh area, the
method described here subdivides the mesh while
introducing new vertices in order to integrate line
segment or polygon. Simultaneously, edge-swapping
operations are performed to improve the aspect ratios
of the locally affected 2.5D triangles provided the
shape is preserved.

3. Shape-preserving approach for polygon
integration

 Presented is a 2.5D triangle mesh representation
using simple data structure for effective mesh
traversal suitable for consecutive searching for the
edges intersected by the polygon. Having found a
consecutive intersected edge, the triangle mesh is
locally subdivided to integrate another polygon point
into the triangulation. In doing so, the triangle aspect
ratios in the immediate neighborhood of the
subdivided triangles are examined and improved
where possible using the edge-swapping approach.
The search goes on until the entire polygon is
integrated into the triangulation.

3.1. Shape-preserving approach for polygon integration

For implementing an effective walking-on-mesh
approach, it is necessary that the 2.5D mesh data
structure keeps adjacency information between the
mesh elements. For the purpose of polygon traversal
and integration, the presented method uses a simple
data structure.

All 2.5D mesh vertices are stored in vector. Each
vertex is represented by three coordinates – two for
the position in the 2D domain and one for the
elevation. Along with that, the vertex stores an
adjacency pointer to any of its adjacent triangles. In
C++ terms:

struct TINVertex { double x, y; double elevation;
TINTriangle *triangle; };

Each triangle keeps adjacency pointers to the three
triangles it shares edges with in addition to pointers
to its three vertices (i.e. to its three adjacent-along-
edge triangles). In C++ terms:

struct TINTriangle { TINVertex *vertex0,
*vertex1, *vertex2; TINTriangle *neighbor0,
*neighbor1, *neighbor2; };

The sequence of vertices in the triangle structure is
important. We have assumed that each triangle must
be clockwise relative to the 2D domain (of course,
the rule could just as well be that all triangles must
be counter-clockwise). The vertices order also
determines the order of the edges (implicitly defined
by the structure) - we assume that the i-th edge is
defined by the i-th and ((i+1) mod 3)-th vertices.
Accordingly, the i-th edge corresponds to the i-th
neighboring triangle (according to their order in the
structure).

3.2 Triangle mesh traversal. Walking-on-mesh along
directed segment (directed polygon)

Traversing the 2.5D triangle mesh along a 2D
polygon (which is a sequence of consecutively
connected directed 2D segments) is performed
segment-by-segment, i.e. the traversal algorithm is
actually based on an approach for walking-on-mesh
along a directed segment, and accordingly, the task
itself is reduced to integrating a directed 2D segment
into the 2.5D triangulation. For now, we will focus
on the integration of a 2D segment. Extending the
method to the 3D segment (respectively a 2.5D
polygon) integration case is trivial, which will be
shown further on.

Should be also noted that as for the walking-on-
mesh approach, the point 2D position to its
containing mesh triangle and the segment-mesh
intersections are being calculated to the 2D mesh
(that is, the walking actually works in the 2D
domain).

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

TEM Journal – Volume 12 / Number 1 / 2023. 25

Provided a 2D position falls on a 2D triangle, its
elevation on the 2.5D mesh is found by intersecting
the vertical ray through the position with the 2.5D
triangle's plane (i.e. extending to the walking-on-
2.5D-mesh case is quite natural).

Essentially, integrating a directed segment ¯(P_0
P_1) into a 2.5D triangle mesh consists of the
following: For the segment starting point P_0 is
searched the 2D mesh triangle that contains it. Due to
lack of a proper seed triangle at that point, the search
starts from a random mesh triangle S and from a
random point P_s within S (see figure 1). In terms of
the method, the random S and P_s are respectively
the seed triangle and seed point to start the search
with. Empirically we concluded that choosing P_s to
be the center of the circle inscribed in the initial seed
S gives good results (though, no obstacles to be on a
seed's vertex or edge).

Figure 1. Integrating directed segment in triangulation -
seed search settings

Next, the 2D edge of the seed triangle intersected
by the newly formed seed segment ¯(P_s P_0) is
searched for. There are two possibilities - such
intersection I exists (figure 2, A) or does not (figure
2, B).

Figure 2. Intersection search between the seed segment
and seed triangle - two possibilities

If no intersection is found (case B), it means that
P_0 is inside the seed triangle (that is, the containing
triangle we are looking for has been already found).
When an intersection I is found (case A), then it
becomes the next seed point (P_s≔I), and the
neighbor triangle N along the intersected edge
becomes next seed triangle (S≔N).

In this case the new seed point is certainly on an
edge of the new seed triangle. This edge is
transitional from the previous seed triangle to the
new one) and therefore it is excluded from further
search for intersections (figure 3).

Figure 3. Marching along the intersected edge (N
becomes the next seed triangle, I becomes the next seed
point, marked with "val" are the two edges of N allowed

for the next intersection check)

A specific processing requires the case when the
intersection I is at a vertex of the seed triangle.
Again, the intersection I becomes the next seed point
but there is no certainty about which triangle to
choose as next seed triangle. To handle this case, all
triangles of the immediate neighborhood of the
intersected vertex are used (all triangles the vertex is
part of). Only their edges that form the outer
envelope of this immediate neighborhood are
allowed for the next intersection check, whereby the
edges of the entry (previous) seed triangle are being
excluded (see figure 4).

Figure 4. Special case when the intersection I is at a
vertex of the seed triangle

The described stepping from a triangle to its
neighboring triangle while following a directed
segment is the walking-on-mesh approach in
question, key to the method. It is introduced here in
the context of the search for the seed triangle that
contains the starting point the segment to integrate.

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

26 TEM Journal – Volume 12 / Number 1 / 2023.

Meanwhile the 2.5D triangle mesh remains
unchanged.

Once the seed triangle containing P_0 is found, the
same walking-on-mesh approach is used in segment
¯(P_0 P_1) integration procedure.

Can be easily noticed that the described walking-
on-mesh approach requires the triangle mesh to be
convex with respect to the 2D domain and segment
P0P1 entirely within it. An extension of this
approach overcoming these limitations (i.e. one
working on randomly positioned segment towards a
random concave mesh) is being developed with the
intention to be presented in a separate work.

3.3. Segment integration

As already shown, the walking-on-mesh along a
directed segment consecutively finds intersections
with triangle edges. These intersections plus the
segment's start and end positions are the points that
will be integrated into the triangulation. While
integrating into the 2.5D triangle mesh, for each of
point-to-integrate needs to have an elevation set
(since the walking-on-mesh alone works in the 2D
domain).

For each point-to-integrate is known the triangle
that contains it (i.e. known are: the seed triangle
containing the 2D segment starting position, the
triangle whose edge is intersected, and the triangle
containing the 2D segment end position when
reached). As already mentioned above, having a 2D
position inside a 2D triangle, its elevation on the
2.5D mesh can be found by intersecting the vertical
ray through the position with the 2.5D triangle's
plane. Finding an elevation "projected" onto a 2.5D
grid form is not the subject of this work, so we will
not go into detail.

The 3D positions are being integrated sequentially
as they are found during walking-on-mesh along the
segment. Each point-to-integrate can either be fully
inside a triangle (can happen for the segment start
and end positions) or on a triangle edge (but not at a
triangle vertex), that is, the triangle mesh is being
subdivided either by inner position or by edge
position (see figure 5).

Figure 5. Subdividing the 2.5D triangle mesh approach

Two observations can be made:
The first is that when integrating a 2D segment, all

newly introduced vertices and edges conform to the
original 2.5D triangle mesh, thus, the mesh shape
remains untouched which means that the described
integration method is shape-preserving.

The second observation is that the way of
introducing new mesh elements does not guarantee
that the resulting triangular mesh satisfies the CDT
condition of maximizing the minimum triangle angle
whenever possible (i.e. more formally, each triangle's
circumcircle should not have any other mesh vertex
in its interior that is simultaneously visible from any
of the triangle's three vertices).

3.4. Improving mesh quality while integrating segments

To overcome this shortcoming, our method uses
the approach for improving the triangles aspect ratios
in mesh area affected by modification presented by
Stanchev and Paraskevov [3]. At each segment
integration step (that is, each time the triangle mesh
is being subdivided to integrate a new vertex, as
described above), each newly introduced triangle
edge except the one following the segment itself is
checked whether edge-swapping it will improve the
mesh quality and if so the swapping is performed. In
our case, the edge-swapping criterion checks whether
the paired 2.5D triangles sharing the edge will have
better aspect ratios (in terms of their 2.5D geometry)
and, simultaneously, whether the angle between their
2.5D planes will be better (means bigger) after the
swap. Figure 6 shows an example of how local
improvement of the triangles during segment
integration improves mesh quality.

Figure 6. Improving mesh quality using the approach
for local improvement of triangles aspect ratios during

segment integration

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

TEM Journal – Volume 12 / Number 1 / 2023. 27

Due to the use of edge-swapping operations,
improving the triangles aspect ratios may affect the
2.5D mesh shape. The edge-swapping criterion
parameters and their setup are key for obtaining the
desired result. In our case, besides the condition for
improving triangles aspect ratios, an additional
criterion condition is that the swapping of an edge
should not produce a sharper mesh edge. An extra
control over the edge-swapping would be the adding
of an ability to "lock" selected mesh edges to prevent
them from swapping. This would make it possible to
specify features on the 2.5D mesh by fixing selected
mesh edges (i.e. by setting edge constraints). We are
doing research in this direction as well and intend to
share the possible results in a separate work.

3.5. Polygon integration into 2.5D triangle mesh

An oriented polygon is a set of consecutively
linked directed segments. In walking-on-mesh terms,
the polygon orientation is only necessary to set the
traversing direction, the choice of which is not
essential for the result of the polygon integration.
The difference in the resulting mesh for differently
oriented traversal is with precision up to swapped
mesh edges, and if triangles aspect ratios are not
being improved during the polygon integration, this
difference will not affect the 2.5D mesh shape at all.

Polygon integration can be thought of as
successive integration of the polygon's directed
segments where the end of a segment is the
beginning of the next one. That is why the search for
the seed triangle is done only once for the starting
polygon point only. As shown above, once the
integration of a directed segment is completed, the
current (running) seed triangle contains the end of the
segment which is the beginning of the next one (i.e.
the seed triangle to start the integration of the next
segment is already known). This significantly speeds
up the polygon integration by minimizing the
walking-on-mesh processing.

The overall process naturally integrates either
random 2D polygons (closed, open and/or self-
intersecting, etc.) while preserving the 2.5D mesh
shape (see figure 7 and figure 8) or 2.5D polygons
(difference from integrating 2D polygon is that a
2.5D polygon comes with defined elevations). Along
with that, the method keeps the triangles aspect ratios
in the resulting constrained triangle mesh (thus,
quality of the result) as good as possible.

Figure 7. An example of how the method integrates a 2D
polygon consisting of 91 segments into a triangle mesh

Figure 8. Same example in a 3D view of how the method
preserves the 2.5D mesh shape and improves the triangles

aspect ratios during the integration

TEM Journal. Volume 12, Issue 1, pages 22‐28, ISSN 2217‐8309, DOI: 10.18421/TEM121‐03, February 2023.

28 TEM Journal – Volume 12 / Number 1 / 2023.

4. Conclusion

 A shape-preserving method for integrating
polygons into a 2.5D triangle mesh is presented.
Integrated in this way, the polygon follows the
original mesh's shape quite precisely and acts as a
clear area separator. This ability is crucial for
delimiting areas of modification and ensuring that
adjacent areas are not affected.
 The presented technique implements an effective
mesh data structure and a walking-on-mesh approach
that allows fast mesh traversal along the polygon
being integrated. Instead of re-triangulating the
affected mesh area, the method enriches the mesh by
introducing new mesh elements to integrate the
polygon. Additionally, it maintains the shape while
maintaining the best aspect ratios for the 2.5D
triangles in the affected area which results in a good
quality triangle mesh. It also means an optimal
number of triangles that is still sufficient for quality
surface modeling which is crucial for the conciseness
of the mesh representation, as well as the efficiency of
any post-processing and analysis.

Acknowledgements

The article is partially funded by the project RD-08-
147/02.03.2022.

References

[1]. Anglada, M.V. (1997, March). An Improved
Incremental Algorithm for Constructing Restricted
Delaunay Triangulations. Computers and Graphics
21(2), 215–223.

[2]. Agarwal, P.K., Arge, L., & Yi, K. (2005). I/O-
Efficient Construction of Constrained Delaunay
Triangulations. In Algorithms–ESA 2005:
Algorithms—ESA 2005, Proceedings of the 13th
Annual European Symposium, October 3-6, 2005.
Proceedings, 13, 355-366. Springer Berlin
Heidelberg.

[3]. Stanchev, B. & Paraskevov, H. (2020). Constraining
Triangulation to Line Segments: A Fast Method for
Constructing Constrained Delone Triangulation.
Mathematics and its Applications: Annals of the
Academy of Romanian Scientists, 12 (1-2).
https://doi.org/10.56082/annalsarscimath.2020.1-
2.164

[4]. Delone, B.(1934). Sur la sphère vide. Bulletin de
l'Académie des Sciences de l'URSS, Classe des
Sciences Mathématiques et Naturelles. 6, 793–800.

[5]. Guibas, L., & Stolfi, J. (1985). Primitives for the
manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM transactions
on graphics (TOG), 4(2), 75–123.
doi: 10.1145/282918.282923

[6]. Shewchuk, J. R. (1996). Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangulator.
In Applied Computational Geometry: Towards
Geometric Engineering, Lecture Notes in Computer
Science, 1148, 203-222, Springer-Verlag, Berlin.

[7]. Chew, L. P. (1987). Constrained Delaunay
triangulations. In Proceedings of the 3rd annual
symposium on Computational geometry, ACM Press,
Waterloo, Ontario, Canada, 215-222.

[8]. Fortune, S. (1987). A sweep line algorithm for
voronoi diagrams. Algorithmica, 2, 153-174.

[9]. Shewchuk, J. R. (2000). Sweep Algorithms for
Constructing Higher-Dimensional Constrained
Delaunay Triangulations. In Proceedings of the
Sixteenth Annual Symposium on Computational
Geometry.

[10]. Zalik, B., & Kolingerova, I. (2003). An incremental
construction algorithm for Delaunay triangulation
using the nearest-point paradigm, International
Journal of Geographical Information Science, 17(2),
119-138. https://doi.org/10.1080/713811749

[11]. Guibas, L.J., Knuth, D.E., & Sharir, M. (1992).
Randomized Incremental Construction of Delaunay
and Voronoi diagrams. Algorithmica, 7(1), 381-413.

[12]. Anglada, M. V. (1997). An improved incremental
algorithm for constructing restricted Delaunay
triangulations. Computers & Graphics, 21, 215-223.

[13]. Domiter, V. (2004). Constrained Delaunay
triangulation using plane subdivision. In Proceedings
of the 8th Central European Seminar on Computer
Graphics, 105–110.

[14]. Shewchuk, J.R. & Brown, B.C. (2015). Fast segment
insertion and incremental construction of constrained
Delaunay triangulations. Computational Geometry,
48(8), 554-574.

[15]. Miller, G.L., Pav, S.E., & Walkington, N.J. (2002).
An incremental Delaunay meshing algorithm.
Technical Report 02-CNA-023, Center for Nonlinear
Analysis, Carnegie Mellon University, Pittsburgh.

[16]. Sleator, D. D., Tarjan, R., & Thurston, W. (1986).
Rotation distance, triangulations, and hyperbolic
geometry. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, 122-135.

[17]. Ruppert, J. (1995). A Delaunay refinement algorithm
for quality 2-dimensional mesh generation. Journal
of Algorithms, 18(3), 548–585.

[18]. Pav, S.E. & Walkington, N. J. (2005). Delaunay
Refinement by Corner Lopping. In Proceedings, 14th
International Meshing Roundtable, Springer-Verlag,
165-182.

[19]. Boivin, C., & Ollivier-Gooch, C.F. (2002).
Guaranteed-Quality Triangular Mesh Generation for
Domains with Curved Boundaries. International
Journal for Numerical Methods in Engineering,
55(10), 1185–1213.

