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Abstract – This paper presents an approach in 
integrating polygons into a triangulation. The 
motivation behind this work is to find a way to 
overcome the lack of appropriate shape-preserving 
methods for modifying 2.5D triangle meshes. 

Widely used approaches for constructing 
Constrained Delone Triangulation (CDT) work in two 
steps: first constructing pure Delone triangulation, and 
next inserting the line segments one-by-one into it [1], 
[2], [3].  

The presented method implements an effective mesh 
data structure and a walking-on-mesh approach 
allowing for fast polygon traversal looking for the 
intersected edges of the 2.5D mesh. Instead of 
reconnecting vertices or re-triangulating the affected 
mesh area, we introduce new mesh vertices and 
subdivide the mesh in order to integrate the polygon. 
The technique also examines and enhances the aspect 
ratios of the 2.5D triangles that are present in (and 
near) the partitioned area while maintaining the shape. 
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1. Introduction

The motivation behind the Constrained Delone 
Triangulation (CDT) methods in general and the 
presented approach in particular is their applications 
in surface modeling, digital terrain modeling (DTM), 
CAD applications and other areas that require 
representation of the features of specific objects 
(such as the elevation contours from topographic 
maps, riversides, property lines, roadways, terrain 
excavations, etc.). The CDT approaches are to make 
sure that the triangulation topology incorporates 
certain segments, i.e. to provide a way to integrate 
into the triangulation the polygons used to model 
objects features into the triangulation. 

Delone Triangulation. The pure Delone Triangula-
tion (DT) [4], [5], [6]  can be performed on any set of 
positions on the plane. Provided there are no 
coincident positions in the set or each coincidence is 
considered a single position, it produces a 
triangulation with the property that there are no other 
vertices inside of any triangle's circumcircle, thus, it 
is optimal in that it maximizes the smallest triangle 
angle. 

Constrained Delone Triangulation. In practice, it is 
often necessary to guarantee topological 
connectivity, that is, it is preferable for the generated 
triangulation to provide a set of predetermined 
segments (links between positions). It is obvious that 
a pure DT cannot be obtained by triangulating a set 
of both positions and segments. Still, the aim is the 
same - to get an optimal triangulation that again 
maximizes the minimum triangle angle (such that 
improves aspect ratios of triangles as much as 
possible) and such triangulation is referred as 
Constrained Delone Triangulation (CDT). A more 
exact definition states that the CDT of a mixed set of 
positions and segments on the plane is such that the 
circumcircle of no triangle contains any other 
triangulation vertex in its interior that is visible from 
all three of the triangles' vertices. Two vertices of a 
triangulation are visible to one another if the line 
segment they form does not intersect any of the 
triangulation's edges. 
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2. Similar techniques

A variety of CDT algorithms is available. Their 
conceptual descriptions are provided here only in 
general terms. 

The Divide-and-Conquer CDT methods [7] 
subdivide the input set of points and segments into 
smaller sub-sets. The triangulation of a small enough 
sub-set becomes trivial. However, in doing it, the 
complexity moves to how to combine the various 
triangulated sub-sets into a single triangulation, 
which is subsequently required. Apart from being 
resource-consuming, the merging is too difficult to 
implement which makes it the crucial part of such 
CDT methods. 

The Sweep-Line CDTs [8], [9] use a sweep-line 
traveling from −∞ to +∞ (with respect to a chosen 
direction - usually there is no reason to use a 
direction other than one of the coordinate axes). First, 
the input set is sorted according to the chosen sweep-
line movement direction. The triangulation below the 
sweep-line is always complete and as the advancing 
front moves, the triangulation is being gradually 
enriched by integrating the next encountered 
elements while making sure that the triangulation 
complies with CDT requirements. 

The Incremental CDT techniques [10], [11], [12], 
[13] are popular and frequently utilized in practice 
since they are easier to implement. Again, new 
vertices and segments are gradually added to the 
triangulation while making sure that the CDT criteria 
are upheld. All known incremental CDTs proceed as 
follows when incorporating a segment: first, all 
triangle edges intersected by the segment are 
detected; next, the intersected ones are removed from 
the triangulation; and finally, the cavity (hole) that 
emerges is then re-triangulated and integrated back 
into the original triangulation. 

Depending on how the points and segments are 
integrated, CDT approaches can be classified in 
another way. The Straightforward CDT methods 
construct the triangulation using both the positions 
and the segments simultaneously. The Post-
processing CDT methods split the process into two 
steps - a first step that produces a pure DT of all 
points, including the ends of the segments; and a 
second step that "constrains" the triangulation by 
gradually integrating all of the segments into it. 

Most of the Incremental CDTs are implemented as 
Post-processing CDTs. The algorithm of Shewchuk 
and Brown [14] inserts a segment into the CDT in 
time linear to the number of the necessary structural 
changes (i.e. to the number of the edges the segment 
intersects). First, all intersected edges are removed, 
thus, opening a cavity in the triangulation; next, the 
opening is re-triangulated and merged back.  

The complexity is analyzed taking into account the 
separate operations (detection of the intersected 
edges, their removal, re-triangulation of the cavity). 
Merging of a sub-triangulation back into the whole 
triangulation rarely adds complexity as, in fact, most 
often the cavity re-triangulation itself is implemented 
as hole (cavity) filling directly in the overall 
triangulation. Other Post-processing CDT methods 
are presented by Agarwal et al. [2] and by Domiter 
[13]. Again, they remove the triangle edges 
intersected by the segment and re-triangulate the 
hollow that was opened (similarly to the Shewchuk 
and Brown's approach [14]). 

Unlike the described Incremental CDTs, Stanchev 
and Paraskevov [3] proposed an algorithm that does 
not remove the triangle edges intersected by the 
segment. Instead, it locally modifies the triangulation 
by performing edge-swapping only. Segment 
integration using this approach is always possible. As 
demonstrated by Sleator et al. [16], the transition 
between two different triangulations of the same set 
of positions is possible through a series of edge-
swapping operations. 

Frequently, the input set of positions and segments 
include degenerate triangles or triangles with a poor 
aspect ratio in their CDT (with nearly collinear 
vertices). Even in the pure DT of a set of positions 
(the Delone condition, which states that no triangle's 
circumcircle contains any more vertices inside of it, 
is always satisfied), an irregular sampling still could 
lead to bad aspect ratio triangles. Constraining DT to 
CDT by integrating the constraints coming from the 
segments further degrades quality of the triangulation 
(i.e. further worsens aspect ratios of the triangles). 

To improve quality of the constructed CDT (and to 
overcome the effect described above), there are 
triangulation techniques that introduce regularizing 
vertices in addition to the input positions and 
segments. It comes to the so-called mesh refinement 
methods. To make sure that the triangulation being 
built meets specific requirements, regulatory vertices 
are incorporated. The usual goal is to produce 
triangles with acceptable aspect ratios throughout the 
triangulation while keeping the number of triangles 
as small as possible. 

Ruppert's initial research on CDT refinement [17] 
suggests an algorithm that produces a 2D CDT 
triangulation of a set of positions and segments while 
assuring that all triangle angles are between α and π-
2α, where α can be between 0 and 20 degrees. The 
algorithm locally improves the CDT by introducing 
new vertices in order to eliminate the thin triangles. It 
splits triangles by introducing a new vertex at the 
triangle's circumcenter or at the triangle's edge 
midpoint. Each local improvement step involves both 
insertion of new vertices and re-triangulation. 
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А drawback of the proposed approach is that it 
does not naturally adapt to curved input (set of 
curves). Pav and Walkington [18] analyze the 
Ruppert's splitting approach and the possible 
improvements for the curved input cases and the 
algorithm they suggest places a protective ball 
around the acute corners. Boivin and Ollivier-Gooch 
[19] also propose an extension of Ruppert’s 
refinement for curved input. Another improvement 
has been proposed by Miller et al. [15] that carries 
out gradual CDT construction by incrementally 
adding input points (and segments), "opening" the 
impacted local triangulation area, eliminating all 
triangles (edges), and re-triangulating the cavity that 
opens. 

Note that both the 2D and 2.5D CDT methods 
operate on a planar domain. However, they are used 
for 3D modeling as well by working on a multi-
domain defined by an initial (coarse) 3D mesh where 
each mesh face defines a planar domain to generate a 
2.5D CDT. Thus, in the context of the adjacent 
domains (the mesh faces), all individual 2.5D CDTs 
naturally merge into an overall 3D mesh. 

As already mentioned, shape preservation is 
problematic when integrating a line segment into a 
2.5D CDT (which defines a 2.5D shape), since the 
known CDT methods avoid introducing new vertices 
by relying on changes in the mesh topology or local 
re-triangulation in order to do the integration, which 
could, however, greatly affect the shape. Instead of 
re-triangulating the affected 2.5D mesh area, the 
method described here subdivides the mesh while 
introducing new vertices in order to integrate line 
segment or polygon. Simultaneously, edge-swapping 
operations are performed to improve the aspect ratios 
of the locally affected 2.5D triangles provided the 
shape is preserved.  

3. Shape-preserving approach for polygon
integration

  Presented is a 2.5D triangle mesh representation 
using simple data structure for effective mesh 
traversal suitable for consecutive searching for the 
edges intersected by the polygon. Having found a 
consecutive intersected edge, the triangle mesh is 
locally subdivided to integrate another polygon point 
into the triangulation. In doing so, the triangle aspect 
ratios in the immediate neighborhood of the 
subdivided triangles are examined and improved 
where possible using the edge-swapping approach. 
The search goes on until the entire polygon is 
integrated into the triangulation. 

3.1. Shape-preserving approach for polygon integration 

For implementing an effective walking-on-mesh 
approach, it is necessary that the 2.5D mesh data 
structure keeps adjacency information between the 
mesh elements. For the purpose of polygon traversal 
and integration, the presented method uses a simple 
data structure. 

All 2.5D mesh vertices are stored in vector. Each 
vertex is represented by three coordinates – two for 
the position in the 2D domain and one for the 
elevation. Along with that, the vertex stores an 
adjacency pointer to any of its adjacent triangles. In 
C++ terms: 

struct TINVertex { double x, y; double elevation; 
TINTriangle *triangle; }; 

Each triangle keeps adjacency pointers to the three 
triangles it shares edges with in addition to pointers 
to its three vertices (i.e. to its three adjacent-along-
edge triangles). In C++ terms: 

struct TINTriangle { TINVertex *vertex0, 
*vertex1, *vertex2; TINTriangle *neighbor0,
*neighbor1, *neighbor2; };

The sequence of vertices in the triangle structure is 
important. We have assumed that each triangle must 
be clockwise relative to the 2D domain (of course, 
the rule could just as well be that all triangles must 
be counter-clockwise). The vertices order also 
determines the order of the edges (implicitly defined 
by the structure) - we assume that the i-th edge is 
defined by the i-th and ((i+1) mod 3)-th vertices. 
Accordingly, the i-th edge corresponds to the i-th 
neighboring triangle (according to their order in the 
structure). 

3.2 Triangle mesh traversal. Walking-on-mesh along 
directed segment (directed polygon) 

Traversing the 2.5D triangle mesh along a 2D 
polygon (which is a sequence of consecutively 
connected directed 2D segments) is performed 
segment-by-segment, i.e. the traversal algorithm is 
actually based on an approach for walking-on-mesh 
along a directed segment, and accordingly, the task 
itself is reduced to integrating a directed 2D segment 
into the 2.5D triangulation. For now, we will focus 
on the integration of a 2D segment. Extending the 
method to the 3D segment (respectively a 2.5D 
polygon) integration case is trivial, which will be 
shown further on. 

Should be also noted that as for the walking-on-
mesh approach, the point 2D position to its 
containing mesh triangle and the segment-mesh 
intersections are being calculated to the 2D mesh 
(that is, the walking actually works in the 2D 
domain).  
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Provided a 2D position falls on a 2D triangle, its 
elevation on the 2.5D mesh is found by intersecting 
the vertical ray through the position with the 2.5D 
triangle's plane (i.e. extending to the walking-on-
2.5D-mesh case is quite natural). 

Essentially, integrating a directed segment ¯(P_0 
P_1 ) into a 2.5D triangle mesh consists of the 
following: For the segment starting point P_0 is 
searched the 2D mesh triangle that contains it. Due to 
lack of a proper seed triangle at that point, the search 
starts from a random mesh triangle S and from a 
random point P_s within S (see figure 1). In terms of 
the method, the random S and P_s are respectively 
the seed triangle and seed point to start the search 
with. Empirically we concluded that choosing P_s to 
be the center of the circle inscribed in the initial seed 
S gives good results (though, no obstacles to be on a 
seed's vertex or edge). 

Figure 1.  Integrating directed segment in triangulation - 
seed search settings 

Next, the 2D edge of the seed triangle intersected 
by the newly formed seed segment ¯(P_s P_0 ) is 
searched for. There are two possibilities - such 
intersection I exists (figure 2, A) or does not (figure 
2, B). 

Figure 2.  Intersection search between the seed segment 
and seed triangle - two possibilities 

If no intersection is found (case B), it means that 
P_0 is inside the seed triangle (that is, the containing 
triangle we are looking for has been already found). 
When an intersection I is found (case A), then it 
becomes the next seed point (P_s≔I), and the 
neighbor triangle N along the intersected edge 
becomes next seed triangle (S≔N).  

In this case the new seed point is certainly on an 
edge of the new seed triangle. This edge is 
transitional from the previous seed triangle to the 
new one) and therefore it is excluded from further 
search for intersections (figure 3). 

Figure 3.  Marching along the intersected edge (N 
becomes the next seed triangle, I becomes the next seed 
point, marked with "val" are the two edges of N allowed 

for the next intersection check) 

A specific processing requires the case when the 
intersection I is at a vertex of the seed triangle. 
Again, the intersection I becomes the next seed point 
but there is no certainty about which triangle to 
choose as next seed triangle. To handle this case, all 
triangles of the immediate neighborhood of the 
intersected vertex are used (all triangles the vertex is 
part of). Only their edges that form the outer 
envelope of this immediate neighborhood are 
allowed for the next intersection check, whereby the 
edges of the entry (previous) seed triangle are being 
excluded (see figure 4). 

Figure 4.  Special case when the intersection I is at a 
vertex of the seed triangle 

The described stepping from a triangle to its 
neighboring triangle while following a directed 
segment is the walking-on-mesh approach in 
question, key to the method. It is introduced here in 
the context of the search for the seed triangle that 
contains the starting point the segment to integrate. 
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Meanwhile the 2.5D triangle mesh remains 
unchanged. 

Once the seed triangle containing P_0 is found, the 
same walking-on-mesh approach is used in segment 
¯(P_0 P_1 ) integration procedure. 

Can be easily noticed that the described walking-
on-mesh approach requires the triangle mesh to be 
convex with respect to the 2D domain and segment 
P0P1 entirely within it. An extension of this 
approach overcoming these limitations (i.e. one 
working on randomly positioned segment towards a 
random concave mesh) is being developed with the 
intention to be presented in a separate work. 

3.3. Segment integration 

As already shown, the walking-on-mesh along a 
directed segment consecutively finds intersections 
with triangle edges. These intersections plus the 
segment's start and end positions are the points that 
will be integrated into the triangulation. While 
integrating into the 2.5D triangle mesh, for each of 
point-to-integrate needs to have an elevation set 
(since the walking-on-mesh alone works in the 2D 
domain). 

For each point-to-integrate is known the triangle 
that contains it (i.e. known are: the seed triangle 
containing the 2D segment starting position, the 
triangle whose edge is intersected, and the triangle 
containing the 2D segment end position when 
reached). As already mentioned above, having a 2D 
position inside a 2D triangle, its elevation on the 
2.5D mesh can be found by intersecting the vertical 
ray through the position with the 2.5D triangle's 
plane. Finding an elevation "projected" onto a 2.5D 
grid form is not the subject of this work, so we will 
not go into detail. 

The 3D positions are being integrated sequentially 
as they are found during walking-on-mesh along the 
segment. Each point-to-integrate can either be fully 
inside a triangle (can happen for the segment start 
and end positions) or on a triangle edge (but not at a 
triangle vertex), that is, the triangle mesh is being 
subdivided either by inner position or by edge 
position (see figure 5). 

 

Figure 5.  Subdividing the 2.5D triangle mesh approach 

Two observations can be made: 
The first is that when integrating a 2D segment, all 

newly introduced vertices and edges conform to the 
original 2.5D triangle mesh, thus, the mesh shape 
remains untouched which means that the described 
integration method is shape-preserving.  

The second observation is that the way of 
introducing new mesh elements does not guarantee 
that the resulting triangular mesh satisfies the CDT 
condition of maximizing the minimum triangle angle 
whenever possible (i.e. more formally, each triangle's 
circumcircle should not have any other mesh vertex 
in its interior that is simultaneously visible from any 
of the triangle's three vertices). 

3.4. Improving mesh quality while integrating segments 

To overcome this shortcoming, our method uses 
the approach for improving the triangles aspect ratios 
in mesh area affected by modification presented by 
Stanchev and Paraskevov [3]. At each segment 
integration step (that is, each time the triangle mesh 
is being subdivided to integrate a new vertex, as 
described above), each newly introduced triangle 
edge except the one following the segment itself is 
checked whether edge-swapping it will improve the 
mesh quality and if so the swapping is performed. In 
our case, the edge-swapping criterion checks whether 
the paired 2.5D triangles sharing the edge will have 
better aspect ratios (in terms of their 2.5D geometry) 
and, simultaneously, whether the angle between their 
2.5D planes will be better (means bigger) after the 
swap. Figure 6 shows an example of how local 
improvement of the triangles during segment 
integration improves mesh quality. 

Figure 6.  Improving mesh quality using the approach 
for local improvement of triangles aspect ratios during 

segment integration 
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Due to the use of edge-swapping operations, 
improving the triangles aspect ratios may affect the 
2.5D mesh shape. The edge-swapping criterion 
parameters and their setup are key for obtaining the 
desired result. In our case, besides the condition for 
improving triangles aspect ratios, an additional 
criterion condition is that the swapping of an edge 
should not produce a sharper mesh edge. An extra 
control over the edge-swapping would be the adding 
of an ability to "lock" selected mesh edges to prevent 
them from swapping. This would make it possible to 
specify features on the 2.5D mesh by fixing selected 
mesh edges (i.e. by setting edge constraints). We are 
doing research in this direction as well and intend to 
share the possible results in a separate work. 

3.5. Polygon integration into 2.5D triangle mesh 

An oriented polygon is a set of consecutively 
linked directed segments. In walking-on-mesh terms, 
the polygon orientation is only necessary to set the 
traversing direction, the choice of which is not 
essential for the result of the polygon integration. 
The difference in the resulting mesh for differently 
oriented traversal is with precision up to swapped 
mesh edges, and if triangles aspect ratios are not 
being improved during the polygon integration, this 
difference will not affect the 2.5D mesh shape at all. 

Polygon integration can be thought of as 
successive integration of the polygon's directed 
segments where the end of a segment is the 
beginning of the next one. That is why the search for 
the seed triangle is done only once for the starting 
polygon point only. As shown above, once the 
integration of a directed segment is completed, the 
current (running) seed triangle contains the end of the 
segment which is the beginning of the next one (i.e. 
the seed triangle to start the integration of the next 
segment is already known). This significantly speeds 
up the polygon integration by minimizing the 
walking-on-mesh processing. 

The overall process naturally integrates either 
random 2D polygons (closed, open and/or self-
intersecting, etc.) while preserving the 2.5D mesh 
shape (see figure 7 and figure 8) or 2.5D polygons 
(difference from integrating 2D polygon is that a 
2.5D polygon comes with defined elevations). Along 
with that, the method keeps the triangles aspect ratios 
in the resulting constrained triangle mesh (thus, 
quality of the result) as good as possible. 

Figure 7.  An example of how the method integrates a 2D 
polygon consisting of 91 segments into a triangle mesh 

Figure 8.  Same example in a 3D view of how the method 
preserves the 2.5D mesh shape and improves the triangles 

aspect ratios during the integration 
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4. Conclusion

     A shape-preserving method for integrating 
polygons into a 2.5D triangle mesh is presented. 
Integrated in this way, the polygon follows the 
original mesh's shape quite precisely and acts as a 
clear area separator. This ability is crucial for 
delimiting areas of modification and ensuring that 
adjacent areas are not affected. 
 The presented technique implements an effective 
mesh data structure and a walking-on-mesh approach 
that allows fast mesh traversal along the polygon 
being integrated. Instead of re-triangulating the 
affected mesh area, the method enriches the mesh by 
introducing new mesh elements to integrate the 
polygon. Additionally, it maintains the shape while 
maintaining the best aspect ratios for the 2.5D 
triangles in the affected area which results in a good 
quality triangle mesh. It also means an optimal 
number of triangles that is still sufficient for quality 
surface modeling which is crucial for the conciseness 
of the mesh representation, as well as the efficiency of 
any post-processing and analysis. 
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