
TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112-45, May 2022.

856 TEM Journal – Volume 11 / Number 2 / 2022.

 Extended Model of Code Orchestration
and Deployment Platform

Todor Ivanov, Nikola Valchanov

Plovdiv University, Faculty of mathematics & Informatics, 236, Bulgaria Blvd., Plovdiv, Bulgaria

Abstract – This paper is focused on the process of
continuous integration and respective orchestration
tooling. It provides a summary on existing tooling with
feature analysis and applications. The research
explores techniques, processes, and solutions for code
orchestration. It includes a comparison of the modern
platforms and discusses the topic of extendibility of
such products by presenting an architectural model
that supports the integration of general-purpose
extensions.

Keywords – continuous integration, continuous
delivery, notifier, pipeline, infrastructure.

1. Introduction

Nowadays, information technologies are growing
and developing rapidly. Almost every existing
problem can be either solved or significantly
simplified by software applications. In order for
those products to be accessible, they need to be
deployed either publicly or within a corporate
infrastructure. In most cases that is managed by
dedicated teams that are costly both in terms of
invested time and resources. The process of
deployment itself is very complicated and strictly
specific for each product. It is often custom-tailored
and constantly accommodated to the needs of the
product as it evolves.

DOI: 10.18421/TEM112-45
https://doi.org/10.18421/TEM112-45

Corresponding author: Todor Ivanov,

Todor Ivanov, Plovdiv University, Faculty of mathematics
& Informatics, 236, Bulgaria Blvd., Plovdiv, Bulgaria.
Email: ivanov.todor1@gmail.com

Received: 15 April 2022.
Revised: 16 May 2022.
Accepted: 21 May 2022.
Published: 27 May 2022.

© 2022 Todor Ivanov & Nikola Valchanov;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution‐NonCommercial‐NoDerivs
4.0 License.

The article is published with Open Access at
https://www.temjournal.com/

Until a few years ago it was common for the
deployment process to be a manual effort. The
process involved both developers and business
analysts to follow a checklist of actions in order to
deploy and ensure the quality of the deployment.
Those operations included preparing the source code,
building the product and making it available. In
addition to that, every developer was responsible for
his own local development environment which
sometimes is a pretty difficult task and requires a lot
of resources. Even though this has to be done only
once, there are still a lot of repetitive operations that
have to be executed since the product never really
stops growing and developing.

Because of that, companies started to search for an
automated solution. Its main goal of this automation
was to speed up and ease the development process by
automatically performing all of the repetitive steps
that otherwise have to be executed manually [5].
Nowadays this automation process is common
practice and is called continuous integration (CI) [1],
[2], [4]. It does not only solve the mentioned
problem, but it also gives additional opportunities for
improvement of the quality and flexibility of the
product.

2. Analysis of Existing Solutions for Code
Orchestration

There are a few existing solutions that provide us
with some tools that may help in solving the
problem. Below are three of the most widely used
code orchestration tools in modern days.

The first solution that we will consider is Jenkins
[6], [7]. It is an open-source automation tool written
in Java and built for Continuous Integration purposes
[18]. Typically, it is being run as a standalone
application in its own process with the built-in Java
Servlet called Jetty. However, if the user wants to,
Jenkins can be run as a servlet on Apache Tomcat or
other Java Servlet containers. This tool is often used
to automate the development workflow by executing
tasks such as building projects, running tests, doing
code analysis, and running deployments.

Fortunately, Jenkins is distributed as a WAR
archive, installer package, Homebrew package,

https://doi.org/10.18421/TEM112-45

TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112‐45, May 2022.

TEM Journal – Volume 11 / Number 2 / 2022. 857

Docker image and as a source code and that allows
the users to run it on almost any platform and OS. It
produces a web user interface and accepts calls to its
REST API. When one runs Jenkins for the first time,
it creates an administrative user with a long random
password, which we can paste into its initial webpage
to unlock the installation. Once installed, one can
either choose to get plugins or continue with the
native product.

In order to achieve the process of Continuous
Integration (CI) in Jenkins, we need to create
pipelines [6]. The pipelines are a set of commands
that are executed by any order, and they automate
certain tasks. These pipelines are configurable files
that are handled by the Jenkins Server. It depends on
the project architecture, but sometimes one might
need several different environments to test his builds.
This cannot be done by a single Jenkins server. Also,
if larger and heavier projects get built on a regular
basis then a single Jenkins server cannot simply
handle the entire load. In that case, one will need to
take advantage of the Jenkins distributed
architecture.

In the distributed architecture [12], [17], Jenkins
uses Master-Slave instances that communicate
through TCP/IP to manage the build processes. The
master instance is the Main Jenkins server, and its
job is to handle the main tasks like:

 Scheduling build jobs;
 Monitoring slave instances;
 Dispatching build tasks to the slave instances for

actual execution;
 Recording and presenting build results;
 Sometimes, if needed, executing build jobs

directly.

That being said, the slave instances are responsible
for just doing the job. They are Java executables that
run on a remote machine and listen for master
commands through the communication channel.
Jenkins Slaves usually:

 can run on different operating systems and
machines;

 Listen for requests from the master instance;
 Execute build jobs that are dispatched by the

master instance.

In addition, a configuration can be done in which
we can specify a slave instance to always run tasks
for a certain project.

In order to execute any build or testing job, Jenkins
takes advantage of Webhooks [8]. The Jenkins server
checks the code repository at certain intervals and if
any changes are made to the source code, it triggers a
job. This job is executed by a predefined pipeline and
that allows us to know which change is getting
tested, which change is sitting in the queue or when

the build is broken. In the build pipeline the build as
a whole is broken down into sections, such as the
unit tests, acceptance tests, packaging, reporting and
deployment phases. The pipeline phases can be
executed in series or in parallel, and if one phase is
successful, it automatically moves on to the next
phase (hence the relevance of the name “pipeline”).

While one uses the web UI to create pipelines [15],
the current best practice is to create a Jenkinsfile and
place it in the repository. These files can be
declarative or scripted. The simpler of the two, the
declarative one, uses Groovy-like syntax. It consists
of a “pipeline” block, which in turn, has nested
“stage” blocks that describe executable steps.

When it comes to pricing, Jenkins is free.
Comparing it to TeamCity or Travis [9], [10], which
requires us to pay a subscription after the free trial;
here we will only need to pay for the machine that
one is going to use to host it. That, and the fact that it
is basically community driven and has thousands of
free plugins, makes it a great choice as a continuous
integration tool.

TeamCity [13], [14] is considered the best
alternative to Jenkins. It is secure out of the box and
offers extremely stable plugins. It also got handy
integrations with xUnit and other code coverage
tools. Like Jenkins, this tool is often used for Java
and .NET projects.

Installing and configuring TeamCity is easy as it
only involves downloading the appropriate TeamCity
Server installer package and executing the
installation instructions. It provides a few pre-built
options that can run on different environments like
Windows, Linux, macOS and via Docker. All of
them come with a bundled Tomcat in some way so
the user does not need to install it manually.
Unfortunately, TeamCity is only available on
premise. If one would like to host it himself, he will
have to set up a proxy server like Nginx.

By installing TeamCity Server, we get a web
application that is responsible for the core
functionality of the product. It gives a rich user
interface that helps distribute the jobs (builds) to
TeamCity agents and aggregate their results. Using
the UI, the user can configure, setup and manage the
entire build and all of its steps [11]. This makes it
easy to use as it does not require any additional
experience or domain-specific knowledge.

To run any jobs in TeamCity, one needs agents.
These agents can be different depending on the job
that they will execute. A fresh TeamCity server has
one registered build agent by default that runs on the
same machine. Additionally, TeamCity will add a
version control system (VCS) trigger automatically
when creating a project or building a configuration
from a repository URL. If such change occurs, a
build is being queued.

TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112‐45, May 2022.

858 TEM Journal – Volume 11 / Number 2 / 2022.

Whenever a build is placed in the queue, the first
free agent takes it up and tries to execute it. Since the
build itself is separated into steps, each step is
executed consecutively after the previous one
finishes, and the result can be either a simple status
or an artifact. Usually, artifacts are published to the
TeamCity Server and can be seen or downloaded.
The main purpose of these artifacts is to allow the
builds to be connected into a build chain called
pipelines. They are often designed to compile, test,
and deploy a certain project, but one can create them
for any other goal. Furthermore, if the desired
building or testing framework is not supported,
TeamCity provides an option for the end user to
create custom scripts that can extend the capabilities
of the agents. These scripts are implemented with
service messages, which are specially constructed
pieces of text that pass commands or information
about the build from the script to the TeamCity
server. However, in order for the custom scripts to be
executed by the TeamCity agent, they need to be
explicitly written to the standard output stream of the
process.

Unfortunately, TeamCity does not provide its full
capabilities for free. Taking into consideration that it
is only available on premise, it comes with a standard
payment subscription package. We can use the free
version of the tool with some limited functionalities,
which in my opinion is a good option when you try
to explore the possibilities of the tool or you can
purchase an additional license for the full set of the
instruments.

TravisCI [16] is another widespread alternative for
continuous integration. It allows developers to
quickly and easily build, test, and deploy code. The
tool is developed mainly in Ruby and currently it is
maintained by the Travis CI Community.

The good thing about Travis is that we don’t really
need to install it. It is available on premise as a SaaS
and the only thing a user needs in order to use it, is
an account. Travis is usually integrated with projects
that are hosted in Version Control Systems like
Github, Bitbucket and Gitlab. It supports the most
popular programming languages and can easily run
builds and tests on your code.

In order to use TravisCI in our product, all we need
to do is to provide a configuration file. This file has
to be located in the repository that will take
advantage of the CI and has to follow the YAML
syntax. The user will need to approve TravisCI's
contribution request to the repository and after that
the functionalities will be available for every open
merge request.

TravisCI differs from Jenkins and TeamCity
because it cannot really execute pipelines out of the
box. It is possible, but in order to achieve that, the
user has to do additional configurations out of the

VCS. These configurations have to be applied
directly to the Travis infrastructure.

Usually, the tool comes with VCS webhooks
integration out of the box. This allows the jobs to be
executed every time a new commit or a merge
request arrives. Some of the reasons that people
depend on this CI are running tests, generating test
reports, analyzing the results and providing code
quality analysis. Each job is responsible for checking
whether the code can compile and follow the
predefined coding standards.

The configuration of Travis itself is placed in the
Travis YAML file, which is part of the repository.
There are predefined steps that can be used as hooks
and the user can execute different commands in
them. After the job has completed, a detailed report
is generated and is available for the maintainer of the
repository.

Unfortunately, Travis does not provide any free
version. In order to explore the functionalities of the
tool, the users can take advantage of the free trial
version for 30 days and then they should either
purchase a license or cancel their subscription.

We can see from the research above that all of the
platforms provide a set of the same features which
we can label as core functionalities. All of these
features are illustrated below in the Table 1.

Table 1. Feature comparison

 TeamCity TravisCI Jenkins
Web Hooks ✔ ✔ ✔
Git Operations ✔ ✔ ✔
Use CLI ✔ ✔ ✔
Create
Downloadable
artifacts

✔ ✔ ✔

Run SSH remote
command ✔ ✔ ✔

Works with
microservice
architecture

✔ X ✔

Has REST API ✔ X ✔
Support master-
slave workers or
agents

✔ X ✔

Has web UI ✔ ✔ ✔
Can be self-
hosted ✔ ✔ ✔

By reviewing the table [Table 1] above, we can

come to the conclusion that most of the systems
implement the following features out of the box:

 Webhooks
 Git operations
 Downloadable artifacts
 SSH commands
 Web UI
 Self-hosting

TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112‐45, May 2022.

TEM Journal – Volume 11 / Number 2 / 2022. 859

3. Extended Model of Code Orchestration
Platform

In order to adapt the currently existing core
functionalities and to expose an extendable
architecture for continuous integration [2] and
continuous delivery [3], we can take a look at the
following diagram [Figure 1]:

3.1. Git and Hooks

The process of CI/CD starts with a notification to
the CI tool from the version control system. The
hooks are responsible for providing a channel for
communication between the source, which is located
in the version control system and the job runner,
which is the CI.

3.2. Queue

The queue is a part of the core functionality of the

CI tool. It is responsible for handling pending jobs
until an agent is free to claim them. The jobs are
added and then assigned to an agent by the order they
entered the queue (e.g. the oldest job is with the
highest priority).

3.3. Agents

The agents are the job runners of the CI. Their
responsibility is to execute already configured tasks
that are chained in a pipeline. Each agent is
responsible for a single job at a certain point of time
and whenever the job completes, he claims the next
one in the queue.

3.4. Pipeline

The pipeline is a sequence of jobs that needs to run
consecutively. Each pipeline is specifically defined
with a configuration that gives a detailed description
of each step and how it should be executed.
Whenever the pipeline finishes it can produce
artifacts.

3.5. CI Notifier

The role of the CI Notifier is to expose events that

can be fired after a specific action or step from the CI
infrastructure has started or completed. These steps
can be part of a pipeline, system events or any
custom-made hooks. The notifier will allow external
middlewares or plugins to be registered as listeners
and to execute additional tasks without changing and
affecting the existing pipelines. The number of
events that the notifier will expose depends on the
amount of stages that we define for a specific
pipeline.

 Figure 1. Extendable architecture for continuous integration

TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112‐45, May 2022.

860 TEM Journal – Volume 11 / Number 2 / 2022.

3.6. Extendable Middlewares

The extendable middleware concept has to handle
different add-ons that may be registered as listeners
to events exposed by the notifier. There should be an
orchestrator that has to take care of the plugin's
lifecycle and to allow adding and removing plugins
without any additional changes to the main flow. The
main purpose of these middlewares can be to add
additional functionalities based on the artifacts that
are generated from the execution steps.

3.7. Use Case Scenarios

With the example architecture above we have

introduced a new concept of event handling by
implementing a CI Notifier module. This provides an
extendibility that was otherwise missing in the base
set of features. We are going to provide an example
that will show the use of this additional module.

 We can say that we need to implement a reporting
tool which will generate statistics based on the
statuses of our CI operations. We have decided to
store the raw data in ElasticSearch and we need to
find a way to gather that data from the CI. In order to
achieve this, we can add a CI Notifier to the CI
implementation. We will then create a few events
and hook them before and after every stage of our
pipeline. They will listen for artifacts that are
generated on success and on error of each step and
will expose these artifacts to whoever needs them.
By having these exposed events we can now attach a
custom-made middleware that will contain
instructions of how to process these artifacts and
upload them to Amazon. It will be very easy to attach
them because we do not need to modify the existing
pipeline. We just need to have access to the already
created artifacts. This means that we can plug and
unplug these middlewares whenever we want.

4. Conclusion

In modern times, there is a problem in the process

of software development because there are a lot of
repetitive actions that need to be performed
constantly. There are products that exist and provide
a solution for that problem by taking advantage of
continuous integration. The platforms that we
reviewed in this article manage to solve that problem
by adopting different approaches for automation
depending on the context. They are straightforward
and do not require any specific domain knowledge
from the user. Unfortunately, not all of them are free
to use it. This means that the companies have to
decide whether they would like to invest in such a
tool or not.

However, even though all of the platforms provide
a good set of features, none of them are easily
extendable. As a result of this research, we were able
to provide a conceptual solution that will allow the
CI platforms to be easily accessible by external
middlewares. This concept will enrich the core
infrastructure with additional opportunities without
the need of any main changes.

References

[1]. Arachchi, S. A. I. B. S., & Perera, I. (2018, May).

Continuous integration and continuous delivery
pipeline automation for agile software project
management. In 2018 Moratuwa Engineering
Research Conference (MERCon) (pp. 156-161).
IEEE.

[2]. Duvall, P. M., Matyas, S., & Glover, A.
(2007). Continuous integration: improving software
quality and reducing risk. Pearson Education.

[3]. Humble, J., & Farley, D. (2010). Continuous delivery:
reliable software releases through build, test, and
deployment automation. Pearson Education.

[4]. Shahin, M., Babar, M. A., & Zhu, L. (2017).
Continuous integration, delivery and deployment: a
systematic review on approaches, tools, challenges
and practices. IEEE Access, 5, 3909-3943.

[5]. Saidani, I., Ouni, A., Mkaouer, M. W., & Palomba, F.
(2021). On the impact of Continuous Integration on
refactoring practice: An exploratory study on
TravisTorrent. Information and Software
Technology, 138, 106618.

[6]. Martin Heller. (2020). What is Jenkins? The CI server
explained. Retrieved from:
https://www.infoworld.com/article/3239666/what-is-
jenkins-the-ci-server-explained.html
[accessed: 13 February 2022].

[7]. Saurabh, (2021), What is Jenkins? Jenkins For
Continuous Integration, Retrieved from:
https://www.edureka.co/blog/what-is-jenkins/
[accessed: 13 February 2022].

[8]. GitHub/Jenkins. (2019). Setting up Webhooks.
Retrieved from: https://gcube.wiki.gcube-
system.org/gcube/GitHub/Jenkins:_Setting_up_Webh
ooks [accessed: 15 February 2022].

[9]. Himanshu Sheth. (2020). Jenkins vs Travis | Which
CI/CD Tool Is Best for You?, Retrieved from:
https://www.lambdatest.com/blog/travis-ci-vs-jenkins/
[accessed: 16 February 2022].

[10]. Himanshu Sheth, (2020), TeamCity vs. Jenkins:
Picking The Right CI/CD Tool. Retrieved from:
https://www.lambdatest.com/blog/teamcity-vs-
jenkins-picking-the-right-ci-cd-tool/
[accessed: 17 February 2022].

[11]. Nishant Sharma, (2021), How to set up a build
pipeline on JetBrains TeamCity?, Retrieved from:
https://medium.com/testvagrant/how-to-set-up-a-
build-pipeline-on-jetbrains-teamcity-41a1b0a67d76
[accessed: 17 February 2022].

TEM Journal. Volume 11, Issue 2, pages 856‐861, ISSN 2217‐8309, DOI: 10.18421/TEM112‐45, May 2022.

TEM Journal – Volume 11 / Number 2 / 2022. 861

[12]. Aksakalli, I. K., Çelik, T., Can, A. B., &
Tekı̇nerdoğan, B. (2021). Deployment and
communication patterns in microservice architectures:
A systematic literature review. Journal of Systems and
Software, 180, 111014.

[13]. Watson, P. (2016). Continuous Integration with
Teamcity. CreateSpace Independent Publishing
Platform.

[14]. Mahalingam, M. (2014). Learning Continuous
Integration with TeamCity. Packt Publishing Ltd.

[15]. Leszko, R. (2017). Continuous Delivery with Docker
and Jenkins. Packt Publishing Ltd.

[16]. Belmont, J. M. (2018). Hands-On Continuous
Integration and Delivery: Build and release quality
software at scale with Jenkins, Travis CI, and
CircleCI. Packt Publishing Ltd.

[17]. Laster, B. (2018). Jenkins 2: Up and Running:
Evolve Your Deployment Pipeline for Next
Generation Automation. " O'Reilly Media, Inc.".

[18]. Soni, M., & Berg, A. M. (2017). Jenkins 2. x
Continuous Integration Cookbook: Over 90 recipes to
produce great results using pro-level practices,
techniques, and solutions. Packt Publishing Ltd.

