Development of e-Book with Flip PDF Professional Based on Scientific Literacy

Nadi Suprapto, Tamlikhotut Tafauliyati, Vivin Khoiri Yanti

Universitas Negeri Surabaya, Surabaya, Jawa Timur, Indonesia

Abstract – Technological developments can be used to support learning. One example of technological development is replacing printed books with non-printed books (e-Books). E-books can be used as interactive learning resources because they can be integrated with images, animations, videos, and flash to make them more exciting and look natural. This paper is one of the results of developing an e-Book based on scientific literacy on temperature and heat concepts. This study aims to produce a good e-Book used to support learning. This research uses ADDIE model development research (Analysis-Design-Development-Implementation-Evaluation) with descriptive-quantitative data analysis data collection techniques using validation sheets to determine the validity of e-books. The results show that the scientific literacy-based e-Book that has been developed is very valid to be used as a learning resource. The percentage value of the media aspect was 92.98%, while the material aspect was 94.73%. Finally, the percentage value of the validity of the language aspect was 94.60%.

Keywords – validity, science literacy, e-Book, learning tools.

1. Introduction

Education is a conscious and planned effort to create a learning atmosphere and learning process. Students actively develop their potential to have spiritual strength, self-control, personality, intelligence, noble character, and skills needed by society, nation, and state [1]. Using education and quality, Human Resources (HR) can be created to support the development of a country. Developing countries believe that education is the primary key to happiness and financial protection in the future [2]. Education can be interpreted as a process where its implementation occurs formally or non-formally. One example is learning in schools. In practice, the learning process in schools is carried out so that learning objectives are achieved according to what is desired, one of which is in science education. Science education aims as a forum for students to learn about themselves and their natural surroundings and apply it in everyday life [3]. Thus, learning science requires students to acquire knowledge indicated by good cognitive values. Still, it is necessary to apply that knowledge to solve problems in everyday life.

The quality of education in Indonesia is still relatively low compared to other countries. It can be seen from the low level of scientific literacy achievement of students in PISA (Program for International Student Assessment). PISA defines scientific literacy as the ability to use scientific knowledge, identify questions, and draw conclusions based on scientific facts and evidence, to understand and make decisions regarding nature and its changes through human activities [4]. For individuals who have high scientific literacy skills, one of the characteristics is that they can master concepts and understand their use and application in everyday life and technology. Facts about the 2018 PISA results, Indonesia was ranked 70th out of 78 participating countries with a score of 396. This score was below the average [5].

The research results of the Research and Development Institute (Balitbang) of the Ministry of Education and Culture in researching the level of student scientific literacy revealed that in developing scientific literacy in Indonesia, there is still a shortage of excellent teaching materials compared to other countries so that these factors affect the lack of student scientific literacy [6]. In examining grade eleven textbooks, it was stated that the textbooks...
only emphasized scientific knowledge. At the same
time, the link between science and technology, and
everyday life was still very lacking [7]. Presenting
books that balance scientific literacy competencies
are associated with social and community
phenomena is one of the efforts that can be made to
improve students' scientific literacy skills [8].

Based on the questionnaire given to 60 students, it
was stated that 56.67% of students indicated that
physics learning was less attractive. The main reason
was the lack of use of digital media in learning, such
as interactive e-books, so students found it difficult
to understand concepts. About 80% of students stated
that teachers taught using the lecture method with the
help of student textbooks and teacher notes, and 78%
of students have difficulty learning physics because
of a lack of initial concepts and assume that what is
taught in physics lessons is only formulas. This
situation is supported by an interview conducted with
one of the physics teachers, stating that they have not
used digital media such as e-books with attractive
appearances in learning physics due to limited time
in learning.

From this description, efforts can be made by
directing 21st-century competencies, utilizing
existing technology as learning media to support the
learning process by referring to scientific literacy
skills, one of which is replacing printed books with
non-printed books (e-books), which has several
advantages, such as being more affordable and more
practical. E-books that need to be developed do not
only refer to scientific literacy skills, but book
designs need to be integrated with images,
animations, videos, and flashes to make them more
attractive and look real so that students can easily
understand concepts [9]. The use of e-books with
interesting features further enhances students' literacy
skills compared to printed books, where students who
are tested using e-books have better reading
comprehension skills than students who use printed
books [10]. Interactive e-books can be used as an
alternative to improve students' scientific literacy
skills by integrating with six contents, including
animations, videos, hyperlinks, interactive questions,
worksheets, and evaluations [11]. In addition, e-
books, by being integrated with virtual laboratories,
can also be used as an alternative for schools that do
not have laboratories, so the development of e-books
developed can be the answer to technology
integration in the 21st century [12].

Many physics e-books have been developed to
support learning in the 21st century. However, most
of these e-books, like printed books, have not been
integrated with video and virtual laboratories and
have not emphasized scientific literacy skills.
Therefore, the author developed an e-book based on
scientific literacy combined with several features that
can train students' scientific literacy skills. This
research aims to produce an excellent scientific
literacy e-book used as a learning resource.

2. Method

2.1. Design

This research is a type of development research
with the ADDIE model, consisting of 5 stages:
Analysis, Design, Development, Implementation, and
Evaluation. However, this research only reached the
Development stage to determine the validity of the e-
Book. Visually, the steps of the ADDIE model can
be seen in Figure 1.

![Figure 1. ADDIE Development Model Schematic](image)

2.2. Data Analysis

This study obtained data from validation scores by
three media expert lecturers. Data collection
techniques to determine the validity were carried out
using a validity sheet instrument developed
previously based on three aspects, namely material,
media, and language. The score obtained can be
interpreted according to the interpretation of the data
adapted by Riduwan [13] to describe the validity of
the developed e-book.
3. Results and Discussion

This study describes the development of scientific literacy-based e-books. Based on the explanation in the method, research on the development of scientific literacy e-books was conducted using the ADDIE research design (Analysis, Design, Development, Implementation, and Evaluation). The following explains the steps for developing a scientific literacy e-book that has been created.

3.1. Analysis Stage

This analysis stage includes an analysis of the purpose and background of making this e-book. Based on the 2018 PISA, the level of scientific literacy achievement of students is still relatively low [5]. In addition to the PISA results, the results of the scientific literacy test on temperature and heat material given to 60 students showed that as many as 85% of students were in the inferior category, 11.67% of students were in the poor class, and 3.33% of students were in the moderate category. It is due to the lack of use of technology in physics learning. This situation is supported by the results of the questionnaire that has been given, stating that 56.67% of students indicated that physics learning was less attractive. The main reason is the lack of use of digital media in learning, such as interactive e-books, 80% of students stated that teachers taught using the lecture method with the help of worksheets and teacher notes, and 78% of students have difficulty in studying physics due to the lack of initial concepts and assume that physics lessons have many formulas. It is supported by interviews with physics teachers who stated that they had not used digital media such as e-books. Therefore, an e-book based on scientific literacy was developed using professional flip PDF software. The software has been produced before and is suitable for use in learning. The development of e-books using professional PDF flip software carried out by the author certainly has differences from the previous one, namely differences in the purpose of making e-books.

3.2. Design Stage

At the design stage, the researcher designs the concept design and graphic design of the e-book that will be developed. The method of the e-book concept includes planning the idea of the material that will be associated with the phenomena of everyday life and current technology, as well as planning for adding graphics to the material to train students in analyzing. The graphic design of the e-book includes cover page design, material display design, and the addition of supporting features to practice scientific literacy. The cover page is designed by integrating images related to the phenomenon of temperature and heat. The following is an e-Book cover page design, as shown in Figure 2.

3.3. Development Stage

At this development stage, namely the stage in making e-books, the designs that have been planned and the features that have been prepared are then built into e-books using a professional flip PDF. Using flip PDF professional software is because the software can add various multimedia, such as animation, video, YouTube, hyperlinks, music, and flash. In addition, the operation of the software is easy and fast. The following is a breakdown of the features added to the e-book:

- The addition of images and videos as supporting features is shown in Figure 4. The addition of pictures and videos is intended to support student...
understanding. Besides that, it can also be used as motivation in learning. The video can be played at any time without any additional software as support.

The material in the e-book is associated with phenomena in everyday life and the use of technology by scientific literacy competence, namely explaining phenomena scientifically, as shown in Figure 5, where students are given the phenomenon of automatic electric irons. Then from this phenomenon, students are taught to explain the concept of temperature and heat. Additionally, they learn how to work together to maintain temperature. The explanation is integrated with an animated video on how to perform an automatic electric iron so that students can easily understand the concept.

Virtual laboratory on expansion sub-materials. The virtual laboratory is designed to provide several metals, including aluminium, copper, brass, iron, and glass. In the simulation, the temperature can be changed to determine the effect of temperature changes on increasing metal length (expansion). In addition, to assess the ability of some metals to expand. The image of the expansion simulation can be seen in Figure 6.

The simulation is by scientific literacy competencies, namely evaluating and designing scientific investigations. The simulation can be run without being supported by additional software, making it easier for students.

At this stage of development, the e-book has been completed to determine if the e-book is valid; before it is realized in learning, it is necessary to have e-Book validity. The scientific literacy-based e-book was validated by three expert lecturers from the UNESA Physics Department. E-Book validation is reviewed from three aspects: media, material, and language. The verification results of the scientific literacy-based e-book can be seen in Figure 7.
Based on the graph in Figure 4, the percentage value of validity from the media aspect is 92.98%, the percentage value of truth from the material element is 94.73%, and the percentage value of reality is reality 94.60%. The percentage value of validity is very valid if the percentage value of truth is in the range of 81%-100% [13]. From these results, it can be concluded that the scientific literacy e-book is very valid in terms of these three aspects.

3.4. Implementation Stage

In the implementation stage, the scientific literacy e-books also need to be supported by learning materials that refer to science literacy-based e-books. The learning materials include the syllabus, lesson plans, students’ worksheets, and assessment sheets. However, this paper is not focused on this stage.

3.5. Evaluation Stage

At the evaluation stage, a thorough assessment is carried out regarding the developed e-book. A thorough evaluation was carried out to identify the weaknesses and strengths of the developed e-book [12], [14], [15].

4. Conclusion

Scientific literacy e-books on temperature and heat materials integrated with pictures, animations, music, videos, virtual laboratories, and worksheets have been developed. The validity of the scientific literacy e-Book that has been designed is assessed from three aspects, including media aspects, material aspects, and language aspects. From these three aspects, the validity value is in the range of 90-95%. Thus, the scientific literacy e-book that has been developed is declared very valid to be used as a learning resource.

References