
TEM Journal. Volume 10, Issue 3, Pages 1011-1015, ISSN 2217-8309, DOI: 10.18421/TEM103-01, August 2021.

TEM Journal – Volume 10 / Number 3 / 2021. 1011

Facebook Integrated Chatbot for Bulgarian
Language Aiding Learning Content Delivery

George Pashev, Silvia Gaftandzhieva

University of Plovdiv “Paisii Hilendarski”, 24 “Tsar Assen” Str., Plovdiv, Bulgaria

Abstract – The paper presents a chatbot oriented
linguistic approach and a software prototype which
addresses the need of delivering learning content based
on queries in Bulgarian language. Two distinct
database query generation approaches are presented,
discussed and implemented. Pros and cons for each of
them are discussed.

Keywords – Facebook, Chatbot, Learning content.

1. Introduction

Facebook has been widely researched as a tool for
e-learning. Some statistical outcome has been
presented in [1]. Towner and Muñoz [2] discusses
some aspects of the Usage of Facebook as a
Classroom Connection as a formal or informal tool
for tutoring. As a widely used social network across
Europe, it has become a viable opportunity for
trainers/teachers to reach more of their students in a
more informal and friendly way.

The topic of using the social network Facebook for
semantic analysis of content, as well as for finding
different users with a specific profile is becoming
more and more actual.

Al-Kouz, de Luca and Albayrak [3] present a
model and system for finding experts in various
subject areas using Facebook. Various attempts can

DOI: 10.18421/TEM103-01
https://doi.org/10.18421/TEM103-01

Corresponding author: George Pashev,
University of Plovdiv “Paisii Hilendarski”, 24 “Tsar Assen”
Str., Plovdiv, Bulgaria
Email: georgepashev@uni‐plovdiv.bg

Received: 18 April 2021.
Revised: 02 July 2021.
Accepted: 09 July 2021.
Published: 27 August 2021.

© 2021 George Pashev & Silvia
Gaftandzhieva; published by UIKTEN. This work is licensed
under the Creative Commons Attribution‐
NonCommercial‐NoDerivs 4.0 License.

The article is published with Open Access at
www.temjournal.com

be found in the literature to evaluate expertise
through statistical models such as classification to k
closest and evaluation of their expertise. Neil [4]
reviews the use of social networking sites in
education. Andriani [5] describes some aspects of
using social networks as a tool for finding future
university of prospective students. Balakrishnan and
Gan [6] explore the relationship between students'
learning styles and the way they use social
networking sites. All these works prove that the
direction related to the use of social networks in e-
learning is promising as well as the finding of
appropriate content or an expert to do a specific
targeted work.

Kazanidis et al. [7] present a quantitative analysis
comparing Moodle LMS and Facebook as LMS.
Users of Facebook and Moodle face similar user
experience, but Facebook outcompetes Moodle as a
platform with a much more significant social
presence.

In the light of the recent Coronavirus Pandemic,
some universities meet various problems in e-
learning. Students need to use various LMS
platforms and video conferencing software in the
context of different courses and different
requirements of different professors. The last
imposes unnecessary overhead to their everyday
routine. Moreover, the lack of physical contact with
professors makes things even worse. Students
experience more and more difficulties in reaching
proper educational content that would meet both
personal learning requirements and professors’
requirements.

To address the issues presented in the above
paragraph, more automation and integration with
popular social networks is needed. An essential
means are chatbots because they tend to be user
friendly and provide more informal interaction.
Moreover, they provide a very simple GUI,
integrated well with social media and various LMSs.

This paper presents a model and system that
facilitates the e-learning process, as well as finding
useful learning data or expert educators from the
learners through the use of a virtual assistant, which
is a virtual Facebook user. It identifies some
requirements needed to achieve such integration with

https://doi.org/10.18421/TEM103-01

TEM Journal. Volume 10, Issue 3, Pages 1011‐1015, ISSN 2217‐8309, DOI: 10.18421/TEM103‐01, August 2021.

1012 TEM Journal – Volume 10 / Number 3 / 2021.

chatbots and a software prototype that to a certain
extent meets them. Convenient usage of semantic
oriented databases such as Elastic [8] is an essential
part of the solution. However, sometimes chatbots
need to be even more robust and try to generate
queries to university databases in such cases in which
semantic search fails to find enough relevant objects
in the semantic database. An attempt to solve this
problem is also presented. Also, this approach would
enable the chatbot to answer questions that are not
merely related to course contents, which are available
as Learning Objects in the semantic database.

2. Realization

In the first step of the realization, the requirements
for the model have been defined. The proposed
model has to meet the following requirements:

 automate the process of posting on Facebook;
 maintain a connection to the knowledge base of

learning objects and experts;
 knowledge base of learning objects and experts

to support semantic indexing and semantic
search;

 perform a semantic search on Facebook users'
queries in the knowledge base and to return the
closest result of the user's query;

 generate SQL queries in RDB from user input in
a natural language if a semantic search in
semantic database “fails” to fetch enough
relevant objects.

The following part of this section describes the
realization of each requirement defined above.

To automate Facebook posting, a C/C ++ based
component is used, which through the REST API of
the Facebook Graph API [9] posts content in a list of
target objects (e.g., Facebook groups, pages, the wall
of the virtual user). Different templates are used in
cases where a post or comment on a post is created
(see Figure 1).

Figure 1. Templates of REST queries to GRAPH API

This component also uses a strategy to "deceive"
Facebook that the user is human by making random
delays in posts and comments. After the delay, it
makes the request itself (see Figure 2).

Figure 2. Creation of request from template and data

The component for supporting semantic indexing
and search uses the Elastic (or ElasticSearch) engine,
which is a well-known Java and REST-based NoSQL
engine for storing and semantic indexing of JSON
objects.

Trial JSON structures of learning objects and
experts (teachers) have been created. Figure 3
presents an exemplary tree structure of an expert.

Figure 3. Tree structure of a JSON object for an expert
(teacher)

To be able to search for an object by semantic

similarity, the natural language query has to become
a template JSON search object. The following
algorithm has been implemented for this purpose (see
Figure 4):

Figure 4. Sequence of steps in semantic search

We will look at each of these steps with a specific
search example. Let us look at the sample query:
“Which lecturer teaches on mobile apps?”. This
query goes through the following steps:

 Step 1. Translation into English - in this case, the
language is English and we will skip this step:
“Which lecturer teaches on mobile apps?”;

 Step 2. Translation from English to a JSON
object – the result after translating to a template
JSON object is {lecturer: true, teach: “mobile
apps”};

 Step 3. Semantic search and return of the first
close result - after performing the semantic
search, it finds the nearest object, described in
Figure 3.

Translation into English (only when the original language is
not English)

Translation from English to a JSON object

Semantic search and return of the first close result

TEM Journal. Volume 10, Issue 3, Pages 1011‐1015, ISSN 2217‐8309, DOI: 10.18421/TEM103‐01, August 2021.

TEM Journal – Volume 10 / Number 3 / 2021. 1013

For step 1: Machine translation into English, the
Java library is used: java-google-translate-text-to-
speech [10].

For step 2: Translation to a JSON object, an
algorithm is implemented. For each simple sentence
(the separator between "simple sentences" can also
be ",", ";") the algorithm does the following:

 removes question marks and prepositions,
leaving only nouns and verbs - e.g., in the
example remains “lecturer teaches mobile appsˮ;

 turns nouns into a basic form: “lecturer teach
mobile app”;

 in the new list of nouns and verbs it does the
following:

o if there is a noun that is not followed by
another noun, it turns it into a predicate
attribute, e.g., lecturer: true;

o if there is a verb followed by a group of
nouns, the name of the verb serves as the
name of the new attribute, and the nouns
serve as the text value of the attribute; e.g.:
teach: “mobile app”;

o if there are only nouns in a simple sentence,
the first one is used for the attribute name
and the others for the value.

For the steps requiring the definition of the parts of
speech and the basic forms, the WordsApi
knowledge base accessible through the REST API is
used [11].

To perform a semantic search on Facebook users'
queries in the knowledge base and to return the
closest result of the user's query, it is necessary to
obtain a natural language response from the structure
of the JSON object. The implemented algorithm does
the following:

 it first looks for an attribute named name and
uses its value as the beginning of a sentence.
Then, for each other attribute:

o if it is a noun with the value predicate: it
generates part of a sentence: e.g. from
lecturer: true will generate is a lecturer;

o if it is a verb, it converts the verb to the third
person and from the value generates a string
for nouns then, e.g. from teach: [discipline:
{name: “Mobile Applications”}] it will
generate teaches Mobile Applications;

o if it is a noun with a value other than
Boolean, then the possessive is generated by
the following example: “name”: “Georgi
Pashev” becomes whose/which name is
Georgi Pashev.

In all three variants, if the value is a complex
object, it will be subjected to a string recursive
transformation of the object according to the same
rules.

Figure 5 presents the overall structural diagram of
the virtual assistant. When a query is placed (text
comment or post on the wall or personal message) by
a user, the Search Query Generator (JSON object)
from text saves the query in a collection of queues in
Elastic.

Figure 5. Structural diagram of the virtual assistant

Then, a special script (called by the cron service)
takes the next request in the queue and finds the
semantically closest object corresponding to the
proceeded request. The found object passes through a
Generator of text from an object and subsequently, a
comment (response) is posted using Graph ID of the
text of the request through the Generator of posts,
which uses the Facebook Graph API. If one wishes,
the agent administrator can publish (for example, on
the agent wall) a selected JSON object according to
the same scheme as the cron script.

Sometimes objects in the result from execution of
the queries in Elastic are not similar enough to the
query object. Semantic oriented databases in practice
are widely targeting very specific applications and
their structure is quite limited in addressing the needs
of those applications. This is why quite often user
input queries might require answers, that are not
present in those databases as query objects or data is
structured inconveniently.

In such a case, we incorporate a strategy to try to
translate the natural language query to SQL and try
to perform a search in various SQL databases, which
tend to be richer in content.

An algorithm for translation from natural language
(currently Bulgarian) to SQL is currently
implemented in C# and makes use of a proprietary
morphological analyzer, which will be discussed in
future papers.

The algorithm executes in the following phases:

 splits user input into sentences;
 for each sentence it does normalization, tagging

and generation of a List of SelectQuery Item.

Normalization is the process in which “stopwords”
are removed from the sentence – for example,
prepositions and other words that are considered to
have no significance in the formation of the meaning.
Punctuation is removed and capital letters are
replaced with non-capital letters. Each word is then
replaced with its base form.

Using our proprietary morphological analyzer,
each word is tagged. The tag contains information
about which part of speech is the word in the
Bulgarian Language.

Merely linguistic tagging, however, is not enough
to perform translation to SQL. The algorithm needs
to find which word for example refers to the table
name or column name in relation or view in the
Relational Database. Available tags are

TEM Journal. Volume 10, Issue 3, Pages 1011‐1015, ISSN 2217‐8309, DOI: 10.18421/TEM103‐01, August 2021.

1014 TEM Journal – Volume 10 / Number 3 / 2021.

TABLE_NAME, COLUMN_NAME, VAL, NONE.
The tag VAL refers to words that are recognized as
search value and will be translated to value in the
WHERE clause in the query.

After Tokenisation, the algorithm needs to find
some relations between tokenized words. The
following strategy is used:

1) All Table name tokens are found.
2) For each found column name, a query in SQL

Structure of the Database is performed to which table
in the sentence it is attributed to. If there is only one
table, which is present in the sentence, then the
column is associated with this table. If there are two
or more table tokens in the sentence which might be
associated with this column, then the one closest to
the column in the text is selected and is associated
with it.

3) If any table in the sentence is found, which can
be associated with this column name, the column
token is transformed to a token of type NONE and is
excluded from future phases in the algorithm. (See
Figure 6.)

//select queries structures generation after tokenization
List<SelectQuery> selects = new List<SelectQuery>();
foreach (var item in tokens) //loop through tokenized sentences
 {
Dictionary<string, string> mapUniqueTables = new
Dictionary<string, string>();

 SelectQuery selectQuery = new SelectQuery
 {
 uniqueTableNames =new List<string>(),
 columns=new List<KeyValPair>(),
haveValues=false
};
int iTokenItems = -1;
foreach (TokenItem token in item) //loop through words in sentence
 {
 iTokenItems++;
if (token.tokenID == TokenEnum.TOKEN_COLUMN_NAME)
 {if(!selectQuery.uniqueTableNames.
Contains(token.tableNameForCol))
selectQuery.uniqueTableNames.
Add(token.tableNameForCol);
KeyValPair kvp = new KeyValPair
 {key = token.word,tableName = token.tableNameForCol,
val = new List<string>() };
for (int i = iTokenItems + 1; i < item.Count; i++)
 {
 TokenItem lookaheadToken = item[i];
if (lookaheadToken.tokenID == TokenEnum.TOKEN_
COLUMN_NAME || lookaheadToken.tokenID ==
TokenEnum.TOKEN_TABLE_NAME)break;
if (lookaheadToken.tokenID == TokenEnum.TOKEN_VAL)
 {//perhaps the value after the column is meant
//to be for this column, use it
 kvp.val.Add(lookaheadToken.word);
 selectQuery.haveValues = true;
 }
}
selectQuery.columns.Add(kvp);
 }elseif (token.tokenID == TokenEnum.TOKEN_TABLE_NAME)
selectQuery.uniqueTableNames.Add(token.word);
}
selects.Add(selectQuery);
 }

Figure 6. Generation of SelectQuery Objects

Currently, the algorithm for the generation of
Select Query from generated SelectQuery object (see
Figure 7) has some limitations. If there are more than
one table tokens, they are assumed to form SQL
inner join. To make performance faster, all available
inner join structures are previously generated and
available in a dictionary, with keys – sets of tables,
which are in the join and are added to the query as
initially generated texts. Value tokens, which are
physically after a column token in the text, are
assumed to be values for this column. If the column
is a numeric type, only numeric values are used for
the value. If a column is of text data type, the
operator SQL like is used in the formation of the text
in the WHERE clause and if there are more than one
words that are tokenized as VAL tokens, they
participate in AND expression, containing more than
one SQL like operator for each word.

This algorithm is quite heuristic and tries not to
deal with specific language syntax rules and sentence
structure. The last makes parsing not quite successful
in some cases but keeps the algorithm universal
enough to work with other languages different than
Bulgarian. For example, if we want the algorithm to
be able to parse English language sentences, all we
need to do is to integrate the implementation with a
morphological analyzer for English Language and
provide a dictionary for synonyms of table and
column names for the English Language. The current
implementation also faces some limitations regarding
more complex relations between columns and values
participating in where clause. It does not discover
when to use for example OR or NOT relations in
query building. This issue will be addressed in future
papers.

string selectQueriesTextOutput = "";
foreach (SelectQuery selQ1 in selects)
 {
 SelectQuery selQ = selQ1;
 selectQueriesTextOutput += "SELECT ";
int i = -1;
 List<String> aa = new List<String>();
foreach (var kvp in selQ.columns)
 {
if(!aa.Contains(kvp.tableName + "." + kvp.key))
 {
 aa.Add(kvp.tableName + "." + kvp.key);
 }
 }

Figure 7. Code fragment of generation of SQL Select

3. Conclusion

It can be argued that the paper demonstrates some
level of achievement of its goals by using very
simple algorithms that can work with simple
sentences and simple structure tree objects that are
suitable for a Facebook virtual assistant, and they are
a good compromise between the quality of the

TEM Journal. Volume 10, Issue 3, Pages 1011‐1015, ISSN 2217‐8309, DOI: 10.18421/TEM103‐01, August 2021.

TEM Journal – Volume 10 / Number 3 / 2021. 1015

generated texts and the ability to recognize natural
language queries and the speed with which the virtual
assistant has to work with groups of trainees who are
in the order of dozens.

More precise testing should be done and, if
necessary, more complex linguistic algorithms and
paradigms of object representation and metadata
related to them, such as generation templates or text
parsing rules, should be introduced.

The advantage of the present approach is that texts
can be generated without such metadata available
using heuristic algorithms. The combination of
semantic databases as Elastic and SQL Query
generation and search if the semantic search fails
with less relevant search results ensures better search
results, not necessarily limited only to course specific
contents.

Future papers will include integration with more
social networks and platforms, overcoming some
cons of the SQL SELECT Query generation
algorithm like the discovery of relations between
discovered tags by incorporating more strategies like
template discovery and translation based on regular
expressions and formal grammars.

Acknowledgements

The paper is supported within the National Scientific
Program “Young scientists and Post-doctoral students” in
accordance with Appendix No. 11 of Council of Ministers
Decision No. 577 of 17 August 2018.

References

[1]. Sana, K., & Sheikh, T. B. (2015). A Study on the Role

of Facebook in E-Learning. International Journal of
Education and Management Engineering, 5(5), 1-11.

[2]. Towner, T. L., & Muñoz, C. L. (2011). Facebook and
education: a classroom connection?. In Educating
educators with social media. Emerald Group
Publishing Limited.

[3]. Al-Kouz, A., Luca, E. W. D., & Albayrak, S. (2011).
Latent semantic social graph model for expert
discovery in facebook. In 11th International
Conference on Innovative Internet Community
Systems (I2CS 2011). Gesellschaft für Informatik eV.

[4]. Selwyn, N. (2009). Faceworking: exploring students'
education‐related use of Facebook. Learning, media
and technology, 34(2), 157-174.

[5]. Kusumawati, A. (2014). Social Networking Sites for
University Search and Selection. Journal of
Education and Practice, 5(25), 130-142.

[6]. Balakrishnan, V., & Gan, C. L. (2016). Students’
learning styles and their effects on the use of social
media technology for learning. Telematics and
Informatics, 33(3), 808-821.

[7]. Kazanidis, I., Pellas, N., Fotaris, P., & Tsinakos, A.
(2018). Facebook and Moodle integration into
instructional media design courses: A comparative
analysis of students’ learning experiences using the
Community of Inquiry (CoI) model. International
Journal of Human–Computer Interaction, 34(10),
932-942.

[8]. Elastic.(2021). Retrieved from:
https://www.elastic.co/ [accessed: 10 March 2021].

[9]. Venkataramani, V., Amsden, Z., Bronson, N., Cabrera
III, G., Chakka, P., Dimov, P., ... & Puzar, L. (2012,
May). Tao: how facebook serves the social graph.
In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of
Data (pp. 791-792).
DOI: https://doi.org/10.1145/2213836.2213957

[10]. De Carolis, B., Redavid, D., & Bruno, A. (2015). A
Sentiment Polarity Analyser based on a Lexical-
Probabilistic Approach, Proceedings of 1st AI*IA
Workshop on Intelligent Techniques At Libraries and
Archives co-located with XIV Conference of the
Italian Association for Artificial Intelligence,
IT@LIA@AI*IA 2015.

[11]. WordsApi: An API for English Language.(2021).
Retrieved from: https://www.wordsapi.com/ ,
[accessed: 10 March 2021].

