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the paper, background information is given about the 
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IDFT and the overlap-add (OLA) synthesis approach. 
Comprehensive notes and recommendations are given 
concerning the applied aspects of their usage. Finally, 
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1. Introduction

The behavior of the real-world signals (which are 
predominantly non-stationary) could be observed in 
fullness by time-frequency (TF) representation into 
the time-frequency domain (TFD), providing 
information for both the time and frequency 
localization of the signal. Moreover, one might be 
interested in performing modifications into the TFD 
(e.g., a time-varying thresholding) and then 
resynthesizing of the modified signal.  

The TF analysis and (re)synthesis are used in 
various applications and signal processing 
techniques: speech enhancement, perceptual audio 
coding, cross-synthesis, time-varying filtering, noise 
reduction, pitch shifting, time-scale modification, 
spectral subtraction, etc.; in the fields of the signal 
processing, acoustics and vibration, radar and sonar 
engineering, machinery diagnosis, power system 
analysis, measurements, medicine, etc. [1, 2]. 

One of the most intuitive and straightforward 
approaches to perform TF analysis and synthesis is to 
use a pair of localized forms of the Fourier transform 
termed Short-Time Fourier Transform (STFT) and 
Inverse Short-Time Fourier Transform (ISTFT) – a 
generalizations of the Gabor transform and Gabor 
expansion [3], respectively, presented by D. Gabor in 
1946. Further, the idea of the STFT/ISTFT 
analysis/synthesis is extensively developed between 
1965 and 1980, mainly associated with the names of 
pioneers J. L. Flanagan, R. M. Golden, M. R. 
Portnoff, L. R. Rabiner, R. W. Shafer, J. B. Allen, R. 
E. Crochiere. In our days, the names of B. Boashash 
and J. O. Smith could be distinguished.  

B. Boashash wrote [1]: “at the last years, the 
focus became more about refining implementations 
and simplifying the concepts, methods, and 
techniques to make them available to a wider 
audience”, so this is a purpose of the publication as 
well. 

The present paper is focused on the development 
of specialized routines for performing STFT and 
ISTFT and their practical implementation in the 
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Matlab® software environment, based on a 
generalized algorithm firstly described by R. E. 
Crochiere in [4]. The newly proposed Matlab® 
functions form a conjugated analysis-synthesis pair 
and are a new impact in the field of the applied signal 
processing (to date, there is no such in-build  pair of 
functions in Matlab®). The paper also gives a 
straightforward and consistent explanation of the 
mathematical background, as well as an insight on 
the practical aspects of the TFD processing.  

2. Background

Mathematical framework of the STFT 

Тhe mathematical framework of the STFT is well 
described by the author in [5]. Let x[n] be a real-
world (i.e., mathematically real and time limited) 
discrete signal. Let’s extract signal frames 
(segments), denoted as [ ]lx m  at regular time 
intervals using a finite window function w[m], 
expressed as [6] 

[ ] [ ] [ ]lx m x m lH w m= + ,           (1) 

where { }1,2,...,m M∈  is the local time index (i.e., an 
index relative to the start of the sliding extraction 
window), M ∈ N is the analysis window length, 

total number of frames; H ∈ N is the hop size (i.e., 
the time advance, expressed in samples, from one 
signal frame to the next). In this manner every signal 
frame is actually translated to time zero. 

Further, Discrete Fourier Transform (DFT) is 
performed on every frame [ ]lx m , given a localized 
two-sided spectrum [6] 

       (2) 

where { }1,2,...,k K∈  is the frequency bin index and 
K ∈  is the DFT size. 

The term [ , ]X k l  is called STFT of x[n] and 
corresponds to the local time-frequency behavior of 
the signal around the time index lH and the 
frequency bin k. If the sampling frequency is denoted 
as sf , the above indices correspond to time 

s
lHt f=  and linear frequency skff K=  [6].

Usually K M= ; for K M>  the sequence [ ]lx m  
is zero padded and the spectrum is interpolated. 
Similarly, when H M<  the STFT is sui generis 
interpolated over the time axis. One must be aware 

that neither of these interpolations actually improves 
the frequency or time resolution. 

Mathematical framework of the ISTFT. Perfect 
reconstruction overlap-add condition. 

First of all, some implicit requirements must be 
met so STFT to be invertible [6, 7]: 

- [ , ]X k l  should exist, hence [ ] 0w m ≠  over its 
length; 

- the signal should be not undersampled into the 
time domain (to avoid frequency domain aliasing), 
that is H M≤ ;  

- the signal should be not undersampled into the 
frequency domain (to avoid time domain aliasing) 
i.e., K M≥ .

Moreover, recovering a given time sequence 
{ }[ , ] | const.X k l k =  with respect to the time
variable l require that the time sampling interval H 
meets the Nyquist criterion based on the bandwidth 
of the analysis window function (that is, the 
bandwidth of the signal frame) [7] 

2
2

s sf f MB H
H M B

 ≥ ⇒ ≤   
,           (3) 

where B is the half-main-lobe width of the analysis 
window (measured to the first zero), normalized to 

that of the rectangular one sf
M

 ≡ 
 

.

The ISTFT begins with inverse DFT of [ , ]X k l  to 
recover [ ]lx m  [6]: 

2

1
[ ] [ , ]

mkK j
K

l
k

x m X k l e
π+

=
∑   .        (4) 

As previously mentioned, in some applications, 
one is interested in making modifications to the 
STFT-matrix. When such TF processing is 
performed (e.g., time-varying thresholding), 
discontinuities may appear at the synthesis frame 
edges. In this case, a new windowing procedure must 
be performed on every signal frame after the IDFT 
with a synthesis window [ ]v m , in order to defeat the 
possible signal artefacts [8]. 

Further, the signal frame is translated from the 
local time index m n lH= −  back to the global time 
index n m lH= + : 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

l lx m v m x n lH v n lH
x n w n lH v n lH

= − − =
= − −

 


.          (5) 



TEM Journal. Volume 8, Issue 1, Pages 56-64, ISSN 2217-8309, DOI: 10.18421/TEM81-07, February 2019. 

58                                                                                                                                  TEM Journal – Volume 8 / Number 1 / 2019. 

 Finally, in order to obtain the original signal one 
must overlap and add (OLA) all (modified) weighted 
signal frames in the time domain [6]: 
 

1

1

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

L

lwv
L

lwv

Hx n x n w n lH v n lH
E

H x n w n lH v n lH
E

=

=

= − −

= − −

∑

∑

 



,        (6) 

 
where  is the mutual energy 

(synergy) of the analysis and synthesis window 
functions (also interpreted as coherent gain of a new 
window function ). 

From Eq. (6) follows that the OLA must be 
conducted in such a way, so both the analysis and 
synthesis windows to be cancelled in the time-
domain, that is, to overlap-add to a constant [2, 6]: 

 
{ }[ ] [ ] ., 1,2,...,

l
w n lH v n lH const n N− − = ∈∑ . (7) 

 
Eq. (7) is called OLA-constraint or perfect 

reconstruction OLA condition.  If Eq. (7) is satisfied 
(that is, the perfect OLA is achieved), the constant is 

equal to wvE
H

 [2], so the reciprocal is the correction 

factor in Eq. (6). 
The resulting processing routine is termed 

Weighted-OLA (WOLA) – a generalized case of 
ISTFT synthesis when different, but synergy 
complimentary analysis and synthesis windows are 
used.  A practical example for WOLA is depicted in 
Fig. 1. 

 

 
Figure 1. An example of a perfect WOLA using Blackman 
window for the STFT analysis and Hamming window for 

the ISTFT synthesis. For both windows 64M =  and 
16H = . Note that the windows are synergy 

complementary. 
 
Two specific cases are arisen in the applied 

ISTFT [2]: (i) the synthesis window is rectangular. 
This means that actually no synthesis window is 

used, since { }[ ] 1, 1,2,...,v m m M= ∈ . In this case, 
one denotes OLA as Constant-OLA (COLA) and it is 
said that the analysis window is amplitude 
complementary i.e., [ ] .

l
w n lH const− =∑ ; (ii) the 

synthesis window is the same as the analysis one i.e., 
[ ] [ ]v m w m≡ , so it is said that the window functions 

are power (or energy) complementary. 
At this point, one must be aware that the only way 

to satisfy the OLA-constraint is via proper choice of 
the hop size H. The maximum value of the hop size 
that still satisfy OLA-constraint is denoted as maxH  
and has different value for COLA and WOLA. 
Furthermore, in presence of modifications on [ , ]X k l  
the maximum hop size decreases to a new value, 
denoted as modH . As a rule of thumb mod max 2H H≅  
[2]. In Tab. 1 maxH  and modH  for some window 
functions are shown, in case of COLA and WOLA. 

 
Table 1. Specific hop sizes for some window functions 
when COLA or WOLA is used, in presence or absence of 
TFD modifications 

 

Window 
function 

Specific hop sizes 
COLA WOLA† 

modH  maxH  modH  maxH  
Rectangular 
(no-window) 2

M  M  2
M  M  

Bartlett 
(triangular) 4

M  2
M  ∄ ∄ 

Tukey 
( 0.5β = ) 12

M ‡ 6
M ‡ 16

M ‡ 8
M ‡ 

Hann 4
M  2

M  6
M  3

M  

Hamming 4
M  2

M  6
M  3

M  

Nuttall 
(minimum 

4-term) 
8

M  4
M  14

M  7
M  

Blackman 6
M  3

M  10
M  5

M  

Blackman-
Harris 

(minimum 
4-term) 

8
M  4

M  14
M  7

M  

FlatTop 
(minimum 

4-term) 
10

M  5
M  18

M  9
M  

Chebyshev 
(-100 dB) 8

M ‡ 4
M ‡ 14

M ‡ 7
M ‡ 

Common 
case [2] 2

M
B

 M
B

 
4 2

M
B −

 
2 1

M
B −

 

† – in case that the synthesis window is the same as the 
analysis one; 
‡ – the OLA is not perfect, but the amplitude ripples are 
below 0.1 %. 
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 When using the STFT for signal processing, the 
OLA-constraint is a must, while for measurement 
and display purposes this requirement can be 
neglected. 

3. Description of the Proposed STFT & ISTFT
Routines

The number of the successive signal frames 
across the length of the analyzed time sequence (cf. 
Fig. 2) is determined as 

1 N ML
H
− = +   

.  (8) 

Figure 2. Graphical representation of the extraction and 
windowing of signal frames into the time-domain 

The complex spectrum calculated from Eq. (2) 
exhibits Hermitian symmetry, as shown in Fig. 3 [9]. 
It is relevant to use and manipulate only the left half 
of the spectrum and then to make a conjugate flipped 
copy of it, in order to reconstruct the whole one. The 
number of unique spectrum lines in the spectrum is 
calculated as [10] 

1
2uniq

MK + =   
.                 (9) 

DC
component

Nyquist 
component Complex conjugate 

flipped copy

uniqKSf
N

[ ]lX k X X

Figure 3. Structure of the discrete complex spectrum of an 
analyzed signal frame. The red frame indicates the unique 

part of the spectrum 

STFT-matrix is determined as , thus it 
could be preallocated in the code beforehand for sake 
of computational efficiency. 

The main steps of the proposed STFT algorithm 
are as follows: 

(1) a particular segment (i.e., a signal frame) l  of 
M  samples is selected from the analyzed signal 
[ ]x n  and then is multiplied by the analysis window 

as [1 ,..., ] [ ]x lH M lH w m+ + ⋅ . In this manner, the 
windowed segment of the signal is translated (slid) in 
the local (frame) time reference [ ]lx m , instead of the 
global time reference [ ]lx n lH− ; 

(2) a classical K-point FFT is made on the 
sequence [ ]lx m  to produce the local spectrum [ ]lX k , 
according to Eq. 2; 

(3) a STFT-matrix [ , ]X k l  is formed with time 
increasing across the columns and frequency 
increasing down the rows. Every column of the 
matrix contains (only the unique) complex spectrum 
coefficients [ ]lX k . Every row of the matrix contains 
a set of DFT coefficients for a given fixed frequency 
versus time and could be interpreting as an output of 
a narrow-band-pass filter; 

(4) the process is repeated along the whole length 
of the signal, with hop size of H samples. 

A similar procedure could be derived to perform 
ISTFT, using the following basic steps: 

(1) a reconstruction of the whole spectrum is 
made from the input one-sided STFT-matrix [ , ]X k l ; 

(2) an IFFT on every STFT-matrix column is 
made. This operation leads to formation of new data 
matrix [ , ]x m l  with the initial windowed signal 
frames (i.e., time series) across the rows and with 
time running across the columns; 

(3) the resulting signal frames are then windowed 
by the synthesis window, converted from a frame 
time reference to the global time reference and 
summed in an overlap-add manner as per Eq. (6). 

For convenience, the nomenclature compliance 
between the article and Matlab routine notations are 
shown in Tab. 2. 

n

x[n]

M

H

N

unanalyzed
 section

sliding
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Table 2. Nomenclature compliance between the article 
and Matlab® routine notations 
 

In article In routine Data type 
[ ]x n / [ ]x n  x vector 

[ ]lx m  xw vector 
[ ]w m  win/awin vector 
[ ]v m  swin vector 
N xlen scalar 
M wlen scalar 
H hop scalar 
K nfft scalar 
uniqK  NUP scalar 
L L scalar 
l l scalar 
[ ]lX k  X matrix 

[ , ]X k l  STFT matrix 
t t vector 
f f vector 
sf  fs scalar 

 
 

 STFT algorithm  
Input: [ ]x n , [ ]w m , H, K, sf  

1: Determination of the signal length N 
2: Determination of the analysis window 

length M 
3: Determination of the uniqK  and L 
4: for l = 0, 1, …, L-1 
5:    step 1: signal segment windowing with 

               the analysis window 
                [1 ,..., ] [ ]x lH M lH w m+ + ⋅  

6:    step 2: K-point FFT on the windowed 
               segment [ ]lx m  resulting the 

               DFT vector [ ]lX k  
7:    step 3: update of the matrix [ , ]X k l   

               
[1,..., , 1 ]

[1,..., ]
uniq

l uniq

X K l

X K

+ =


 

8: end for 
9: Time and frequency vectors generation 

 ( ), ,..., 1
2 2 2 s
M M Mt H L H f = + + − 

 
 

( )0,..., 1uniq sf K f K= − ⋅  

Output: [ , ]X k l , t, f 

 
 

1/fs xlen

x

win

0 l1 l3l2 l4

sliding

hop

fs/nfft

k1

k5
k4
k3
k2

k6
k7
k8

STFT 
matrix

.*

FF
T

FF
T

FF
T

FF
T

N
U
P
=
c
e
i
l
(
(
1
+
n
f
f
t
)
/
2
)
;

L=1+fix((xlen-wlen)/hop);  
Figure 4. The proposed STFT processing workflow. 

For convenience, the Matlab® routine notations 
are used (cf. Tab. 2). 

 
ISTFT algorithm  
Input: [ , ]X k l , [ ]w m , [ ]v m , H, K, sf  

1: Determination of the number of frames L 
2: Determination of the synthesis window 

length M 
3: Estimation of the signal length N  
4: Reconstruction of the whole localized 

spectrum STFT-matrix [ , ]X k l  
5: Columwise IDFT on the [ , ]X k l  resulting 

the time series matrix [ , ]x m l  
6: for l = 1, 2, …, L 
7:    step 1: weighted overlap-add (WOLA) 

               of the signal segments using the 
               synthesis window 
              [1 ( 1) ,..., ( 1) ]x l H M l H+ − + − =  

              [ , ] [ ]x m l v m⋅  
8: end for 
9: Amplitude correction of the reconstructed 

signal by factor 
[ ] [ ]

m
H w m v m⋅∑  

10: Time vector generation 
( )0,..., 1 st N f= −  

Output: [ ]x n , t 
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1/fs xlen = wlen+(L-1)*hop;

x

xw

0

sliding

hop

fs/nfft

k1

k5
k4
k3
k2

k6
k7
k8

STFT 
matrix

=
IF

FT

IF
FT

IF
FT

IF
FT

NUP

L

Ov
er

la
p a

nd
 

ad
d (

OL
A)

l1 l3l2 l4

Notes: 
1) The reconstruction

of the whole complex 
spectrum is not shown 
here;

2) The IFFT is
performed on the whole 
STFT-matrix directly 
(columwise) using 
Matlab®;

3) The multiplication
by the synthesis window 
is not shown here.

Figure 5. The proposed ISTFT processing workflow. 
For convenience, the Matlab® routine notations 

are used (cf. Tab. 2). 

Software improvements 

Several improvements are implemented into the 
developed software routines yielding better 
performance and more accurate results: 

- the STFT-matrix is preallocated in advance, 
yielding acceleration of the code; 

- the STFT complex coefficients are restricted to 
uniqK , so the size of the STFT-matrix is reduced to 

half, providing memory optimization; 
- the timestamps in the time vector t are localized 

at the temporal centers of the sliding windows (the 
time instances corresponding to the windows 
maximums in the time domain) instead at their 
beginnings, assuring more precise orientation when 
the TFD is visualized. 

The proposed STFT and ISTFT Matlab® functions 
could be rewritten using entirely matrix techniques 
instead loop-structures, with creative use of the 
buffer and bsxfun functions and padarray, circshift 
and arrayfun functions, respectively, but on the 
expense of worsen readability and unnecessary 
complexity. 

4. Analysis and Synthesis Savoir-Faire

Here, some useful addendums and good practices 
are noted to support the applied STFT analysis and 
ISTFT synthesis. 

OLA potpourri [2]: 

- the OLA constraint could not be satisfied for 
hop sizes 1

2H M> ;
- all windows satisfy the OLA constraint for hop 

size H = 1 (aka sliding DFT); 
- the rectangular window is the only one that 

satisfies the OLA for hop sizes H = 0 and H = M;   
- once the OLA constraint is satisfied for hop size 

Tips and tricks: 

- set       for sake of computation 
acceleration; 

- ensure 1K M R> + −  when filtering is 
implemented using filter with impulse response 
length R [6]; 

- prefer to use one and the same window for the 
analysis and synthesis in order to facilitate the attain 
of the WOLA; 

- prefer to use Hann or Hamming windows due to 
their good properties and OLA behavior; 

- avoid hop sizes less than the necessary since the 
successive signal frames become strongly correlated 
and hence no novel information could be extract, yet 
the execution time increases; 

- always check if the OLA constraint is satisfied 
for the given window(s) length and hop size using an 
appropriate tool and never act just by intuition; 

- if a visualization of the amplitude and/or phase 
of the [ , ]X k l  is going to be implemented as (one-
sided) spectrogram and/or phasogram, the following 
relations should be used, based on [11]:  

1

2 [ , ]
[ ]

M

m

Spectrogram X k l
w m N

=
∑

 ,        (10) 

Phasogram =arg( X[k,l]) ,         (11) 

where { }1,..., uniqk K∈ and      is the argument 
(phase) of 

- equation (8) indicates that unanalyzed samples 
may remain at the end of the signal x[n], as far as the 
sliding window could not reach them, as can be seen 
in Fig. 6. In this case, the length of the synthesized 
signal [ ]x n  would be ( )1M L H N+ − < . This 
truncation could be avoided if the original signal x[n] 
is padded with 
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N MM H N
H
− + −  

                   (12) 

 
zeros at the end. Respectively, the same number of 
zeros must be removed from the end of the 
reconstructed signal [ ]x n ; 
 

 
Figure 6.  An example of amplitude attenuation and length 
reduction of the resynthesized signal, in comparison with 

the original (analyzed) one 
 

- certain amplitude attenuation emerged at both 
ends of the resynthesized signal as a result of the 
insufficient number of overlapping windows (see 
Fig. 6.). This phenomenon could be overcome, when 
both ends of the signal are padded with 1M H− +  
zeros, so that the analyzed signal has length of 

2( 1)N N M H= + − + . Apparently, the same 
number of zeros must be removed from the edges of 
the resynthesized signal. When this correction is 
done simultaneously with the above one, N  should 
be used instead of N  in Eq. 12. 

An example of the overall result of both 
corrections is shown in Fig. 7. 
 

 
Figure 7. Comparison of the analyzed and resynthesized 

signals when special precautions are taken, as is 
described in Section 4. Note the perfect reconstruction 
 

Resolution considerations 
 

By TF-resolution one means the ability to 
distinguish two spectral peaks in the frequency 
domain and two individual events in the time 
domain. In the STFT/ISTFT context the resolution is 
determined by the analysis window function, which 
should have: (i) narrow main-lobe to ensure good 
frequency resolution; (ii) small level of the side-lobes 
for good amplitude resolution; (iii) shorter duration 
of the window (i.e., window length) in order to 
resolve the closely spaced time events. Hence, a good 
choice will be a window with duration-bandwidth 
product as lower as possible. However, this product 
could not be arbitrary small and it is restricted by the 
Gabor limit [3]. Thus, for the sake of the applied TF 
analysis one must note: 

 
- the window duration ( sM f≅ ) should be 

approximately equal to the typical time duration at 
which the signal is considered to be essentially 
stationary (e.g., 20÷40 ms for human speech). The 
shorter window degrades the computational 
performance and the longer one leads to 
underestimation of the signal dynamics;  

- when the resolution is paramount, the Blackman 
window (not to be confused with Blackman-Harris 
one) should be used – it has small bandwidth-
duration product along with strong side-lobes 
attenuation and medium main-lobe width [12];  

- if the time and frequency resolution that one can 
achieve in a spectrogram is insufficient, a two 
different spectrograms could be made: one with a 
short window for making more precise time 
measurements, and one with a larger window for 
frequency measurements. The two extreme cases are 

1M = , so [ , ] [ ]X k l x n=  and M N=  yielding 
[ , ] DFT{ [ ]} [ ]X k l x n X k= =  ; 
- when one considers the TF-visualization, two 

additional types of resolution are introduced: time 
grid resolution which is defined as the time between 
the beginnings of the successive frames, depending 
of the hop size H and frequency grid resolution 
depending on the DFT-size K. However, these 
quantities must not be confused with the actual time 
and frequency resolutions which depend on the 
analyzing window’s length M and bandwidth B, 
respectively. 

 
For detailed information about the window 

functions and their parameters the reader could refer 
to [11], [13]. 
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5. Examples 
 

A few examples are given using Matlab® to 
examine the proposed STFT/ISTFT functions.  

First, a real-world sample of human speech – 
record “DR2_FRAM1_SI522” from the TIMIT 
database [14] is analyzed using the developed STFT 
function. The signal has duration T = 6.21 s and 
length 99431N =  samples at sample rate 16000sf =  
Hz. The resulting spectrogram is show in Fig. 8. 

Further, for illustration purposes, two audio 
effects are implemented using the STFT/ISTFT pair 
– speech robotization and whisperization. The 
robotization effect is obtained by setting the STFT 
phase spectrum to zero, and the whisperization – by 
randomizing the phase spectrum [15].  

The visual examination of the resulting 
spectrograms shows the effects of the TFD 
processing on the harmonic structure of the 
resynthesized signals. The robotized signal (Fig. 9.) 
has reshaped harmonic with constant pitch, but the 
vocal formants are preserved, so the speech sounds 
monotonically, yet recognizable. In the whispered 
signal (Fig. 10.) the vocal formants are also 
maintained, but any sense of pitch is completely 
eliminating, yielding smearing of the harmonics and 
thus imitates the whispered aspect of the voice. The 
analysis/synthesis parameters are: Hamming window 
(for both the analysis and synthesis) with 1024M = , 

128H =  and 4096K =  for the robotization, and 
with 128M = , 16H =  and 512K =  for the 
whisperization, respectively. 

The produced examples of analysis-modification-
resynthesis and visualization are a good testimonial 
of the developed functions. 

 

 
Figure 8. Spectrogram of the original speech signal. It 
reveals the harmonic structure of the signal and shows 

that its pitch is a function of time 
 

 
Figure 9. Spectrogram of the robotized signal. Note the 

constant pitch provided by setting all phases to zero 
 

 
Figure 10.  Spectrogram of the whispered signal. Note that 

any sense of pitch is completely eliminating due to the 
randomization of the phases 

 

Finally, a speed test is conducted in order to show 
the outperformance of the proposed STFT routine in 
comparison with the in-build Matlab® function 
spectrogram [16]. The Matlab® in-built signal “train” 
was used for the tests, with duration T = 1.57 s and 
length 12880N =  samples at sampling frequency 

8192sf =  Hz, together with Hamming periodic 
window. The analysis conditions and test results are 
listed in Tab. 3. The data shows that the author’s 
function is about 2.5 times faster than the Matlab® 
one.  

 

Table 3. Execution time of the proposed and the in-built 
Matlab® STFT functions, averaged over 1000 runs 

Analysis 
parameters 

Author’s 
function 
time, ms 

Matlab® 
function 
time, ms 

Execution 
time 

decreasing 
M = 256, 
H = 256, 
K = 256 

0.138 0.310 55.5 % 
(2.2 times) 

M = 512, 
H = 256, 
K = 512 

0.163 0.403 59.6 % 
(2.5 times) 

M = 1024, 
H = 64, 

 K = 4096 
2.750 7.254 62.1 % 

(2.6 times) 
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6. Conclusions 
 

In the presented work, novel routines are 
developed for TFD processing – STFT analysis and 
ISTFT synthesis (or perfect reconstruction), based on 
DFT, IDFT and the Weighted-OLA approach.   

The STFT and ISTFT algorithms are 
implemented and tested in the Matlab® environment 
as a complementary ready-to-use functions, 
accessible at [17], [18], accompanied with a software 
product named “OLAExam” that assists the proper 
choice of the analysis/synthesis windows' length and 
hop size, in order to achieve synergy compliance and 
thus perfect reconstruction. 

The statement is supported with comprehensive 
notes and recommendations concerning the applied 
aspects of the functions usage, along with an original 
approach for defeating of the edges' amplitude 
attenuation and length reduction of the resynthesized 
signal. 

Examples of analysis, spectral modification and 
resynthesis of non-stationary signals are provided 
that confirm the consistency of the algorithms and 
routines, along with examples for the outperformance 
of the proposed analysis function in comparison with 
the corresponding in-built Matlab® function. 

The developed software routines are a new impact 
in the TFD processing practice. They are of 
particular importance to the signal processing 
specialists. The paper also assists the better 
understanding of the STFT and ISTFT concepts and 
their practical application and therefore has high 
methodological value. 
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