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Abstract – Here we examine the behavior of a rational 
Lotka - Volterra model which is a modification of the 
ordinary polynomial case. We find nonnegative 
equilibrium points and define conditions in the 
parametric space for the stable positive equilibrium 
point. We also prove existence of the stable limit cycle 
in the case of the unstable positive equilibrium point. 
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1. Introduction 

 
Lotka - Volterra models have been observed in 
several papers. There are many variations of this 
model with a various numbers of predators and 
preys. Certain results in general case, Lotka-Voltera 
model with m predators and n preys by “Pure-Delay 
Type” Systems, are presented in [1]. In the case of a 
three-dimensional system it is possible to occur more 
than one limit cycle (see [2]). The basic Lotka - 
Volterra model with one predator and one prey is 
given by the system 
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�𝑥̇ = 𝑎𝑥 − 𝑏𝑥𝑦
𝑦̇ = 𝑐𝑥𝑦 − 𝑑𝑦,                                           (1) 

where x is a prey and y is a predator. One of the basic 
results for this model is the following theorem, (see 
[3]). 
 
Theorem 1: Every solution of the Lotka - Volterra 
system (1) is a closed orbit (except the equilibrium 
point and the coordinate axes). 
 
Theorem 1 implies existence of the periodic solution 
of the system (1) for all initial conditions, (see [4]). 
There is also a modified Lotka - Volterra model with 
a prey and two predators, where there is possible 
coexistence between them, under certain conditions 
for positive parameters. 
 

       �
𝑥̇ = 𝑎𝑥 − 𝑥𝑦 − 𝑥𝑧
𝑦̇ = −𝑏𝑦 + 𝑥𝑦
𝑧̇ = −𝑐𝑧 + 𝑥𝑧.

 

 
2. Rational Lotka - Volterra model 
 
In this paper we consider the following rational 
Lotka - Volterra model: 
 

�
𝑥̇ = 𝑥(1 − 𝑥) − 𝑎𝑥𝑦

𝑥+𝑐

𝑦̇ = 𝑏𝑦(1 − 𝑦
𝑥

),
                                           (2) 

where x is a prey and y is a predator. In the system 
(2) the initial conditions are non-negative and the 
parameters a, b and c are positive real numbers. 
The next theorem characterizes two equilibrium 
points. 
 
Theorem 2: System (2) has two non-negative 
equilibrium points, a saddle point 𝐸1(1,0) and a 
positive point 
  

𝐸2 �
1−𝑎−𝑐+�4𝑐+(𝑎+𝑐−1)2

2
, 1−𝑎−𝑐+�4𝑐+(𝑎+𝑐−1)2

2
�, 

https://dx.doi.org/10.18421/TEM72-14
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where a,b and c are positive real parameters. Also, 
x-axis is a stable manifold of point 𝐸1(1,0).  
 
Proof: Equilibrium points are the solutions of the 
following system  

�
𝑥(1 − 𝑥) −

𝑎𝑥𝑦
𝑥 + 𝑐

= 0

𝑏𝑦 �1 −
𝑦
𝑥
� = 0.

 

The second equation implies 𝑦1 = 0 and  𝑦2 = 𝑥 
what along with the first equation gives 𝑥1 = 1 and 
 

𝑥2,3 =   
1 − 𝑎 − 𝑐 ± �4𝑐 + (𝑎 + 𝑐 − 1)2

2
. 

Since  

𝑥3 =   
1 − 𝑎 − 𝑐 − �4𝑐 + (𝑎 + 𝑐 − 1)2

2
< 0, 

there are only two non-negative equilibria. 

The system (2) can be written in the form 

𝑥̇ = 𝑓(𝑥), 

where 

𝑓(𝑥) = �
𝑥(1 − 𝑥) −

𝑎𝑥𝑦
𝑥 + 𝑐

𝑏𝑦 �1 −
𝑦
𝑥
�

�. 

Jacobian matrix of  𝑓(𝑥)  

𝐷𝑓 = �
1 −

𝑎𝑦
𝑐 + 𝑥

+ 𝑥 �
𝑎𝑦

(𝑐 + 𝑥)2 − 2�
−𝑎𝑥
𝑐 + 𝑥

𝑏𝑦2

𝑥2
𝑏 −

2𝑏𝑦
𝑥

� 

evaluated at the point 𝐸1(1,0) is given by 

𝐷𝑓(𝐸1) = �−1
−𝑎
𝑐 + 1

0 𝑏
�. 

The corresponding eigenvalues of 𝐷𝑓(𝐸1), 𝜆1 = −1 
and 𝜆2 = 𝑏, have an opposite sign so the point 
𝐸1(1,0)43T is a saddle point for all parameter values 
(see [5]). 
 
Obviously the both components of the point 

𝐸2 �
1−𝑎−𝑐+�4𝑐+(𝑎+𝑐−1)2

2
, 1−𝑎−𝑐+�4𝑐+(𝑎+𝑐−1)2

2
� are 

positive.  

For 𝑦 = 0 system (2) is reduced to the logistic 
equation  

𝑥̇ = 𝑥(1 − 𝑥) 

whose solution is 

𝑥 =
1

1 + 𝐶𝑒−𝑡
. 

Hence 𝑥 → 1 when 𝑡 → ∞ and the x-axis is a stable 
manifold of the equilibrium point E1(1,0). For more 
details of the logistic equation see [6,7]. 
 
We use Tr - Det terminology to prove stability of the 
equilibrium point 𝐸2 under certain conditions, (see 
[3,8]). The eigenvalues of the matrix  
 

𝐴 = �
𝑎11 𝑎12
𝑎21 𝑎22� 

are solutions of the equation: 

𝜆2 − (𝑎11 + 𝑎22)𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0, 

or equivalently 

𝜆2 − (𝑡𝑟(𝐴))𝜆 + det (𝐴) = 0. 

So, 

𝜆1,2 =
𝑡𝑟(𝐴) ±�(𝑡𝑟(𝐴))2 − 4det (𝐴)

2
. 

The following Lemma shows det (𝐷𝑓(𝐸2)) is strictly 
positive. 
 
Lemma 1: If  𝑎, 𝑏, 𝑐 > 0  then 

𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� > 0. 

Proof: The Jacobian matrix 𝐷𝑓 evaluated at the point 
𝐸2 is 

𝐷(𝐸2) = �𝑑11
−1 − 𝑎 − 𝑐 + �4𝑐 + (𝑎 + 𝑐 − 1)2

2
𝑏 −𝑏

�, 

where 

 𝑑11 =
2𝑎 − 1 + 3𝑐 − 2�𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2)

2
− 

(1 + 𝑐)(−1 − 𝑐 + �𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2)
2𝑎 . 

Since 𝑎, 𝑏, 𝑐 > 0 and 
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det �𝐷𝑓(𝐸2)� =
𝑏(−𝑎 + 2− 2𝑐 + �𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2)

2
 

+
𝑏(1 + 𝑐)(−1− 𝑐 +�𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2)

2𝑎
. 

we only need  to prove  

(𝑎 + 1 + 𝑐)�𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2 

> (1 + 𝑐)2 + 𝑎2 − 2𝑎 + 2𝑎𝑐, 

or 

(𝑎 + 1 + 𝑐)�(𝑎 + 𝑐 + 1)2 − 4𝑎 > (𝑎 + 𝑐 + 1)2 − 4𝑎. 

Expression (𝑎 + 𝑐 + 1)2 − 4𝑎  is strictly positive. 
Indeed, 

(𝑎 + 𝑐 + 1)2 − 4𝑎 = (a + c − 1)2 + 4c , 

so 

(𝑎 + 1 + 𝑐) > �(𝑎 + 𝑐 + 1)2 − 4𝑎. 

Hereof 

det �𝐷𝑓(𝐸2)� > 0. 

Lemma 2: If  𝑎, 𝑏, 𝑐 > 0  and 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

> 2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐 

then 

𝑡𝑟 �𝐷𝑓(𝐸2)� < 0. 

Proof:  

tr �𝐷𝑓(𝐸2)�

=
2𝑎2 − (1 + 𝑐)(−1 − 𝑐 + �𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2

2𝑎

−
𝑎(1 + 2𝑏 − 3𝑐 + 2�𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2

2𝑎
 

and tr �𝐷𝑓(𝐸2)� < 0 iff 

2𝑎2 − (1 + 𝑐)(−1 − 𝑐 + �𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2

2𝑎

<
𝑎(1 + 2𝑏 − 3𝑐 + 2�𝑎2 + 2𝑎(−1 + 𝑐) + (1 + 𝑐)2

2𝑎
, 

what is equivalent to 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

>2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐. 

This proves our Lemma. 

Theorem 3: If  𝑎, 𝑏, 𝑐 > 0  and 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

> 2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐 

then the equilibrium point 𝐸2  is stable. 

Proof: We need to prove both eigenvalues  

𝜆1 =
𝑡𝑟�𝐷𝑓(𝐸2)�−��𝑡𝑟�𝐷𝑓(𝐸2)��

2
−4𝑑𝑒𝑡�𝐷𝑓(𝐸2)�

2
, 

𝜆2 =
𝑡𝑟 �𝐷𝑓(𝐸2)� + ��𝑡𝑟 �𝐷𝑓(𝐸2)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)�

2
 , 

of the matrix 𝐷𝑓(𝐸2) are negative or have  negative 
real parts. 
 
According to Lemmas 1 and 2 if 

 
�𝑡𝑟 �𝐷𝑓(𝐸2)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� > 0,  

then 

𝑡𝑟 �𝐷𝑓(𝐸2)� − ��𝑡𝑟 �𝐷𝑓(𝐸2)��
2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0.  

Similarly 

𝑡𝑟 �𝐷𝑓(𝐸2)� + ��𝑡𝑟 �𝐷𝑓(𝐸2)��
2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0 

if 

 
�𝑡𝑟 �𝐷𝑓(𝐸2)��

2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0.  

This implies both eigenvalues are complex with 
negative real part and the equilibrium point 𝐸2 is 
stable under the above stated conditions.  
 

Theorem 4: If  𝑎, 𝑏, 𝑐 > 0  and 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

=  2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐 

then the equilibrium point 𝐸2  is a center. 
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Proof: Similarly as in Lemma 2 we can prove  

𝑡𝑟 �𝐷𝑓(𝐸2)� = 0 (3) 

for 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

= 2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐. 

Now we obtain pure imaginary eigenvalues  

𝜆1,2 = ±𝑖�det �𝐷𝑓(𝐸2)� 

and the equilibrium point 𝐸2 is a center (see[5]). 

 

Theorem 5: If  𝑎, 𝑏, 𝑐 > 0  and 

(2𝑎 + 𝑐 + 1)�(𝑎 + 𝑐 − 1)2 + 4𝑐 + 𝑎 + 2𝑎𝑏 

< 2𝑎2 + (𝑐 + 1)2 + 3𝑎𝑐 

then the equilibrium point 𝐸2  is unstable. 
Furthermore, there is a stable limit cycle. 

 
Proof: The proof of the inequality     

2𝑎2𝑏 + (1 + 𝑏)(𝑐 + 1)2 + 2𝑎𝑐 + 3𝑎𝑏𝑐 < 𝑎(𝑏2 + 𝑏 + 2) 

for 𝑎, 𝑏, 𝑐 > 0 is similar to the proof of Theorems 3 
and 4. It implies 

𝑡𝑟 �𝐷𝑓(𝐸2)� > 0 

what leads to the conclusion that the equilibrium 
point  𝐸2  is unstable.  
The limitation of the prey x follows from the first 
equation of the system (2), since the function 𝑥 − 𝑥2 
is decreasing. Same, the function 𝑏𝑦 − 𝑏𝑦2

𝑥
 of the 

second equation in (2) is decreasing by y what 
obtains limitation of the predator y. Thus, both 
variables x and y are bounded in the first quadrant. 
Since both equilibrium points 𝐸1 and 𝐸2 are unstable 
there is a stable limit cycle. 
 

In the following we present a graphical illustration of 
Theorems 3 and 5. 
 

 
 
Figure 1. The case when the equilibrium point 𝐸2 is stable 

for the parameter values a=2, b=1 and c=0.5. 
 

 
 

Figure 2. The case when the equilibrium point 𝐸2 is  
ustable for the parameter values a=5, b=0.05 and c=0.5. 

 
3. Conclusion 
 
Depending on the values of the parameters a, b and c 
there are 5 dynamic scenarios for the system (2) 
which includes the cases of the stable equilibrium 
point and the unstable point with a stable limit cycle. 

Depending on whether it is
 

 �𝑡𝑟 �𝐷𝑓(𝐸2)��
2
−

4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0 or 
 

�𝑡𝑟 �𝐷𝑓(𝐸2)��
2
− 4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� ≥ 0, there are 5 

possible scenarios for the point 𝐸2: 
 

1. If  𝑡𝑟 �𝐷𝑓(𝐸2)� < 0 and 
 

�𝑡𝑟 �𝐷𝑓(𝐸2)��
2
−

4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� > 0 the equilibrium point 𝐸2 is a 
real sink. 

2. If  𝑡𝑟 �𝐷𝑓(𝐸2)� < 0 and 
 

�𝑡𝑟 �𝐷𝑓(𝐸2)��
2
−

4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0 the equilibrium point 𝐸2 is a 
spiral sink. 

3. If  𝑡𝑟 �𝐷𝑓(𝐸2)� > 0 and 
 

�𝑡𝑟 �𝐷𝑓(𝐸2)��
2
−

4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� > 0 the equilibrium point 𝐸2 is a 
real source. 
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4. If  𝑡𝑟 �𝐷𝑓(𝐸2)� > 0 and 
 

�𝑡𝑟 �𝐷𝑓(𝐸2)��
2
−

4𝑑𝑒𝑡 �𝐷𝑓(𝐸2)� < 0 the equilibrium point 𝐸2 is a 
spiral source. 

5. The case 𝑡𝑟 �𝐷𝑓(𝐸2)� = 0 is unique and the 

equilibrium point 𝐸2 is a center. 
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