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Abstract – The paper deals with dynamic analysis of 

a wind power generator as a large flexible structure 
with high speed rotating machines and considerable 
masses. The dynamic model is considered as a 
multibody system of rigid and flexible bodies. 
Nonstationary and transitional processes caused 
because of eccentricity of the high speed rotating 
machines, as well as, of the propeller vibrations are 
simulated and analyzed. Analytical method is applied 
for dynamic simulation. The results are verified by 
numerical procedures. Example of wind power 
generator with three propellers is presented. 
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1. Introduction 

 
Rotating machines play a paramount role in many 

modern industrial applications. Most of them can be 
considered as on-board machines affected mainly by 
mass unbalance and support excitations. Automotive 
turbocharger, ship and aircraft turbines as well as 
locomotive electrical generators are examples of 
rotors on moving base. The undesirable mass 
unbalance is due to the eccentricity of the center of 
mass along the rotor axis and can be caused by 
material non-homogeneities, manufacturing defaults, 
assembly and service conditions. The rotor balancing 
aims at minimizing the mass unbalance but generally 
does not lead to a complete cancellation, see, for 
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example. A rotor can also be excited by the 
movement of its base which can increase the lateral 
vibration of the rotor and create a dynamic instability 
phenomenon. These are wind power generators, 
powerful turbo-generators subject to inertial and 
kinematic (seismic) excitations, and etc. Similar 
structures possess significant vertical stiffness and 
several times lower stiffness in horizontal direction 
because of specific equipment placed under them 
(columns, support, and etc.) [1], [2]. As a result of 
these particularities a large deflections and unstable 
areas of oscillations of the wind generators during the 
process of the rotational acceleration could be 
observed. 

To prove the reliability of the investigations 
analytical and numerical methods are applied. The 
analytical method consists in application of 
asymptotical methods [3–5]. The numerical approach 
uses novel generalized Newton – Euler dynamic 
equations for rigid and flexible bodies [6, 7].  

The paper presents an approach to dynamics 
simulation of rigid and flexible multibody systems 
including high speed rotating machines with 
considerable inertia mass properties. The subject of 
the investigation is a wind power generator with 
three propellers which is considered a system 
compiled of an elastic column with large height and a 
rotor with eccentricity. The stiffness and damping of 
the column, as well as, of the rotor bearings and the 
shaft are taken into account. The external 
disturbances are modeled as earthquake vibration 
excitations. Non-stationary vibrations and 
transitional processes are analyzed.  
 
 
2. Analytical model of a high speed rotor on a 

sizeable flexible foundation 
 
In Fig. 1. the design scheme of a turbomachine 

mounted on a large flexible pillar is depicted. The 
pillar (a beam of steel tube) is placed on a basement. 
On the top of the beam the stator and the rotor of the 
turbo generator are mounted. The rotation is along an 
axis perpendicular to the plane XY, while the 
deflections of the system are in the same plane.  
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In Fig. 1. (b) the kinematic analog (scheme) is 
presented and in Fig. 1 (c) the corresponding 
dynamic model of the system including the reduced 
mass and stiffness properties. Further down the 
analytical approach for deriving of the dynamics 
equations is presented.  

The first natural frequency and mode of vibration 
are obtained taking into account that the pillar is a 
cantilever beam for which the first and second   
natural frequencies are computed as follows [4]:[9]. 
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where E is Jung modulus of the elasticity [ ]; I  
is the geometrical inertia moment [ 4m ]; 
  

0
col

i
mm m
H

= =  [ mkg ] is point mass distributed 

along the beam with mass colm ; H is the length of the 

beam. The mass reduced to the beam tip is to be 
derived equalizing the kinetic energy of the reduced 
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where 0m  is the mass of the distributed points and 
1iu  is the value of the first modal vector of the 

corresponding point (Fig. 2.) . The mass pointed out 
with 1m  (point A) includes the reduced mass of the 
pillar rm  and the mass of the stator. 2m  of point C is 
the mass of the rotor. 

Taking into account the first natural frequency and 
the mass reduced to the pillar tip one could estimate  
 

 
 
 

 

 
 
 
 
 
 
 
 
the stiffness coefficient 1c  of bending [ mN ]. Using 
the Lagrange dynamic equation one obtains the 
following dynamic equations for the system of Fig. 1. 
(c): 
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kinematic (seismic) excitations along axes X and Y, 
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Figure 1. Test model of high speed rotating machine 

mounted on an elastic column: (a) virtual design 
scheme; (b) kinematic analogue; (c) dynamic model 
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Figure 2. Algorithm for mass reduction of the column 
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differential equations that correspond to the system 
Eq. (3) is obtained using the relations: 
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It should be pointed out that 3ω , from physical 
point of view, is the critical angular velocity of the 
shaft for motionless mass 1m . The modal vectors of 
the vibrations are as follows: 
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Using quasi-normal coordinates and the method of 

averaging [8] one obtains the amplitudes of the 
vibrations in the vicinity of each of the resonances 

Ωω ≡i  i.e.: 
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The additional resistance torque in case of small 

disturbances ( )iωΩ− , respectively ( )1 z− , is: 
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and the common resistant torque is: 
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(6 - 8) are presented in details in [8].  
 
 
3. Example based on the analytical investigations 

 
Based on the theoretical results and conclusions 

and for the geometrical and physical parameters of a 
wind turbo generator with power about 350 [kW] the 
frequency spectrum of the pillar, as well as, the 
amplitudes, modal vectors, stability of the vibrations  
and others in quasi-stationary transitional modes are 
calculated. The following input data are used: the 
pillar – a beam of steel tube with height L = 20 [m]; 

density ρ = 8.1 ×103[kg/m3]; outer and inner 
diameters D0 = 2 [m], D1 = 1.96 [m], respectively; 
mass of the gondola (stator) 31032 ×= .m*  [kg]; 
distributed beam mass 30 101 ×= .m  [kg]; beam rigid 
body mass reduced to the beam tip - 31079 ×= .mr , 
in accordance with Fig. 1., 2. and Eq. 2; stiff and 
damping coefficients of the beam c1 = 9.6 × 106 
[N/m], b1 = (10÷50) × 103 [N.s/m], respectively; 
rotor mass (mass in point C) mC = 1.6 × 103 [kg]; 
mass inertia moment of the rotor JC = 100  [m4]; 
rotor eccentricity e = 0.002 [m]; driving dM , 
respectively, resistant cM  torques are of the type 

 
( ) ( ) ΩΩ .MMqM dd 1204 −=≈ ; 
( ) ( ) 24 50 ΩΩ ..MqM cc =≈ ; e.cf 24 = , 
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where Ω  is the angular velocity of the rotor, torque 
for zero angular velocity τ.M 3000 =  (1.7.τ ≤ 17) . 
The results are obtained for two cases. The first one 
discusses extremely elastic shaft with stiff coefficient 

42 1040 ×= .c  [N/m] and damping 32 1011×=b  
[N.s/m]. The second one is several times stiffer 
beam, i.e.: 42 105×=c  [N/m]. In Fig. 3. the results 
for ( )za1 , ( )zM d , ( )zL  are depicted in case for 
transition through the first resonance 1ωΩ = , i.e. z = 
1, 3151 .=ω  [s-1 ] for two different values of 1ν , i.e.:  
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1Μ  is the equivalent mass according to the first 
natural frequency. Varying the driving torque for 
zero velocity, 0dM , i.e. changing τ , and for quasi-
stationary increasing, respectively, decreasing of the 
rotor velocity, it could be observed violence of the 
condition for vibration stability. As a result of that it 
in the frequency range, from point A to point B and 
for increasing of Ω , respectively z, as well as, from 
point D to point C  (Fig. 3.) for decreasing of Ω , 
collapse of the vibrations could be observed. 
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Figure 3. Zones of instability for the rotor rotation 
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4. Numerical analysis of the rotor for wind 
power generator  

 
The rotor of Section 3 is analyzed using numerical 

methods for verification and analysis in case of 
earthquake excitation. The numerical approach for 
dynamics simulation of rigid and flexible multibody 
systems enables many nonlinear effects as contact, 
friction, external excitations (seismic disturbances) to 
be taken into account. In Fig. 4. the system of the 
previous chapter is regarded as a wind power 
generator with three propellers. In the figure, 
consequently, the structure of the wind generator, the 
adjustment of the electric generator to the gondola 
and flexible deflections of the pillar, as well as, one 
of the propeller and the flexible degrees of freedom 
are depicted. With   the degree of freedom that 
presents the ground shaking is denoted.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the principle of the virtual work all external 

forces, including the inertia, stiffness and damping 
forces are reduced to the system coordinates to derive 
the dynamic equation that are expressed by a system 

of n×n ODE with respect to the generalized 
coordinates q  , i.e.:  

 

( ) Sqq,BqM =+⋅   (10) 
  

where M is n×n mass matrix, S is 1×n  matrix-vector 
of the generalized forces, ( )qq,B   is velocity depend 
term. Numerical analysis of the structure in Section 
3, solution of Eq. (10), is conducted. In Fig. 5 the 
behavior and transitional processes of the turbo 
generator are displayed that fully coincides with the 
results of the analytical analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Earthquake shaking affects forced motion of the 
structure basement. The ground motion is registered 
by so called strong-motion accelerating graphs and 
normally consists in three orthogonal components of 
the ground acceleration. The velocity and 
displacement of the ground are obtained integrating 
the data of the accelerating gram. They also can be 
analyzed to obtain direct estimation of peak ground 
motion, duration shaking and frequency. For a 
specific region using statistical data the accelerating 
grams for the three orthogonal space displacements 
are as follows:  
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These are actually reonomic kinematic constraints 

that depend on time. For a multibody system with 
degree of freedom n which motion is described by 
ODE, Eq. (10), subject to m reonomic constraints 
(Eq. 11) the dynamic equations are presented as 
follows: 
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In Eq. (12) the coordinates ( ) ,i iq q t=   
1, 2,..,i k k k m= + + + , included as parameters of 

the reonomic constraints, are known, while the 
generalized forces ( ) ,i iS S t=  1,i k= +  
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Figure 4. The design scheme of the wind 

power generator and its units 
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2...,k k m+ +  are unknown. In other words, the 
solution of equations system, Eq. (12), results in 
solution of mixed direct and inverse dynamic 
problem to find the values of the coordinates  

( ) n,...,mk,k,...,i,tqq ii 11 ++==   and the generalized 
forces ( ) mk...,k,ki,tSS ii +++== 21 . The dynamic 
equations, subject to reonomic constraints, Eq. (12), 
are transformed with respect to the unknown 
parameters as follows: 
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where the matrices S , M , M  are compiled 
according to the indices of the coordinates subject to 
the reonomic constraints. 

The structure of Fig. 4. is imposed on a earthquake 
for 5 seconds with acceleration of the excitation 

( )t.cos...q ππG.201 = .  In Fig. 6. a, b, c the behavior of 
the system (amplitude of the rotor displacement with 
respect to the basement as a function of the rotor 
angular velocity) is displayed. It could be seen that 
the earthquake causes extremely high system 
displacement and, even more, in some instants 
diminish rotor angular velocity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusions 
 
Analytical approach to dynamics simulation of 

large structures of rigid and flexible bodies is 
proposed including high speed rotating machines 
taking into account design inaccuracy as eccentricity 
of the rotor and external disturbances. 

The results are verified using numerical method for 
dynamic analysis of multibody systems. Example of 
wind power generator with three propellers is 
proposed.  

An approach for dynamic analysis of structures 
subject to seismic excitations is applied for 
simulation of the wind power generator behavior 
imposed on an earthquake.  
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Fig. 6. Time histories of the rotor displacements function 

to the rotor angular velocity and the earthquake 
excitation 

 (a) for the full time of the computational procedure; 
(b) for the first 1.7 second of the earthquake excitation; 

          
 


